Featured Post

Apache Ignite Monitoring With Control Center - How to Manage the Complexity of a Distributed System

Imagine that we need to build a monitoring infrastructure for a distributed database, such as Apache Ignite. Let’s put metrics into Prometheus. And, let’s draw charts in Grafana. Let’s not forget about the notification system—we’ll set up Zabbix for that. Let’s use Jaeger for traces analysis. For state management, the CLI will do. As for SQL queries, let’s use a free JDBC client, such as DBeaver. Now, let’s configure an authentication system for each of the tools, so that no information can leak. We are there. We have a bunch of tools that, together, are more complicated than the distributed system itself.
read more

Previous Entries

In this second article of the three-part “Getting Started with Ignite Data Loading” series, we continue our review of data loading into Ignite tables and caches. However, we now focus on Ignite CacheStore. CacheStore Load Facility Background Let’s review what was discussed about CacheStore in “Article 1: Loading Facilities.” The CacheStore interface of Ignite is the primary vehicle used in…
read more
With this first part of “Getting Started with Ignite Data Loading” series we will review facilities available to developers, analysts and administrators for data loading with Apache Ignite. The subsequent two parts will walk through the two core Apache Ignite data loading techniques, the CacheStore and the Ignite Data Streamer. We are going to review these facilities in relation to specific…
read more
Hadoop Data Lakes are an excellent choice for analytics and reporting at scale. Hadoop scales horizontally and cost-effectively and performs long-running operations spanning big data sets. GridGain, in its turn, enables real-time analytics across operational and historical data silos by offloading Hadoop for those operations that need to be completed in a matter of seconds or milliseconds. In…
read more
Apache Ignite can scale horizontally to accommodate the data that your applications and services generate. If your in-memory cluster is about to run out of memory space, you can take advantage of horizontal scaling, which is one of Ignite’s foundational architectural capabilities. The “throw more resources into the cluster” approach is an often-heard piece of advice. However, in practice, most of…
read more
Apache Ignite Deployment Patterns The Apache Ignite® in-memory computing platform comprises high-performance distributed, multi-tiered storage and computing facilities, plus a comprehensive set of APIs, libraries, and frameworks for consumption and solution delivery (all with a “memory first” paradigm). This rich set of capabilities enables one to configure and deploy Ignite in many diverse…
read more
Note: This is the third and final post in the blog series: Continuous Machine Learning at Scale With Apache Ignite. For post 1 click here and for post 2 click here. In my first post, I introduced Apache® Ignite™ machine learning and explained how it delivers large-scale, distributed, machine-learning (ML) workloads. In my second post, I discussed the Apache Ignite model-building stages. The…
read more
Note: This is post 2 in the blog series: Continuous Machine Learning at Scale with Apache Ignite. For post 1 click here and for post 3 click here. In my first post, I introduced the topic “continuous machine learning at scale with Apache Ignite,” which is how we members of the Apache® Ignite™ community describe machine learning (ML) architectures that offer the following advantages: Support…
read more
Glenn Wiebe, Solutions Architect at GridGain, has created a helpful video series that introduces developers to Apache Ignite as an in-memory database (IMDB) and features a demo that will set up a working IMDB in ten minutes. The demo walks through the process of configuration creation, data loading and cluster querying via SQL tools. 1. Introduction Learn the difference between Apache Ignite as…
read more
Note: This is post 1 in the blog series: Continuous Machine Learning at Scale with Apache Ignite. For post 2 click here and for post 3 click here. This is my first blog post in a series that discusses continuous machine learning at scale with the Apache® Ignite™ machine learning (ML) library. In this article, I’ll introduce the notion of continuous machine learning at scale. Then, I’ll discuss…
read more
Kafka with Debezium and GridGain connectors allows synchronizing data between third party Databases and a GridGain cluster. This change data capture based synchronization can be done without any coding; all it requires is to prepare configuration files for each of the points. Developers and architects who can’t yet fully move from a legacy system can deploy this solution to give a performance…
read more