Architects Use GridGain to Accelerate and Scale-Out Applications

Enterprise architects need to speed up and scale out new or existing enterprise applications to drive new digital initiatives. Digital transformation requires a new generation of business applications that ingest, process and analyze data in real-time to drive optimal user experiences. With GridGain, you can create modern, flexible applications built on an in-memory computing platform that can scale with your business needs.

Architects
In-Memmory Computing
GridGain In-Memory Computing Solutions

GridGain offers enterprise architects the in-memory computing platform software, support, and professional services they need to better achieve real-time digital business goals. The GridGain in-memory computing platform easily integrates with new or existing applications and provides real-time performance and massive scalability.

Built on the open source Apache Ignite project, GridGain is a cost-effective solution for accelerating and massively scaling out new or existing applications, with features and abilities that span a wide variety of use cases and industries.

How GridGain Helps Enterprise Architects

For existing applications, GridGain is typically used as an in-memory data grid between the application and data layer, with no rip-and-replace of the underlying database. For new applications, GridGain is used as an in-memory data grid or an in-memory database. A unified API, including ANSI-99 SQL and ACID transaction support, provides easy integration with existing applications and databases. GridGain can be deployed anywhere including on-premises, on a public or private cloud, or in a hybrid environment.

Business Decision Makers
Learn About GridGain In-Memory Computing Solutions for Enterprise Architects

The white papers, webinars, application notes, product comparisons, and videos below discuss use case considerations from an architectural standpoint.

Resources

This white paper provides insight on improving the scale, speed, and agility of MySQL so that it can support the digital transformation initiatives of today's enterprises. New business needs and performance demands have pushed many applications beyond MySQL's (and other RDBMSs) architectural limits. In many cases, the issues cannot be remedied by just fixing MySQL.
This white paper explains how to use in-memory computing to add PostgreSQL speed and scale options to end-to-end IT infrastructure—both from PostgreSQL-centric vendors and from other open source and third-party products. It also explains how help create flexible IT infrastructure over time to both increase speed and scale.
Download this white paper to learn about your options for adding speed, scale and agility to end-to-end IT infrastructure—from SAP HANA to third-party vendors and open source. It also explains how to evolve your architecture over time for speed and scale, become more flexible to change, and support new technologies as needed.
This white paper discusses how to increase Microsoft® SQL Server® speed and scale using in-memory computing. There are options for adding speed and scale to Microsoft SQL Server® at the database level—including SQL Server Always On Availability Groups and SQL Server In-Memory OLTP—and each has its place. But when the speed and scale needs extend beyond the database layer, the best long term approach is in-memory computing.
This white paper will take a detailed look at the challenges faced by companies that have either used Redis and run into its limitations, or are considering Redis and find it is insufficient for their needs. This paper will also discuss how the GridGain in-memory computing platform has helped companies overcome the limitations of Redis for existing and new applications, and how GridGain has helped improve the customer experience.
This white paper reviews why IMC makes sense for today’s fast-data and big-data applications, dispels common myths about IMC, and clarifies the distinctions among IMC product categories to make the process of choosing the right IMC solution for a specific use case much easier.
This white paper discusses how incorporating Apache Ignite into your architecture can empower dramatically faster online analytics processing (OLAP) and online transaction processing (OLTP) when augmenting your current MySQL infrastructure. Read this white paper to learn more about how Apache Ignite can eliminate the pain points of MySQL.

Spread betting offers some compelling advantages, including low entry and transaction costs, preferential tax treatment, and a diverse array of products and options. Traders can bet on any type of event for which there is a measurable outcome that might go in either of two directions – for example, housing prices, the value of a stock-market index, or the difference in the scores of two teams in a sporting event.

This white paper discusses how to accelerate Apache® Cassandra and improve Cassandra performance. Apache Cassandra is a popular NoSQL database that does certain things incredibly well. It can be always available, with multi-datacenter replication. It is also scalable and lets users keep their data anywhere. However, Cassandra is lacking in a few key areas – particularly speed. Because it stores data on disk, Cassandra is not fast enough for some of today’s extreme OLTP workloads.

Many companies who have succeeded with IoT have solved their challenges around speed, scalability and real-time analytics with in-memory computing. Across these deployments some common architectural patterns have emerged. This whitepaper explains some of the most common use cases and challenges; the common technology components, including in-memory computing technologies; and how they fit into an IoT architecture. It also explains how Apache® Ignite™ (Ignite) and GridGain® are used for IoT.

The Apache Ignite transactional engine can execute distributed ACID transactions which span multiple nodes, data partitions, and caches/tables. This key-value API differs slightly from traditional SQL-based transactions but its reliability and flexibility lets you achieve an optimal balance between consistency and performance at scale by following several guidelines.

Apache Ignite can function in a strong consistency mode which keeps application records in sync across all primary and backup replicas. It also supports distributed ACID transactions that allow you to update multiple entries stored on different cluster nodes and in various caches/tables. In addition, consistency and transactional guarantees are put in effect for memory and disk tiers on every cluster node.

Apache Ignite 2.8 includes over 1,900 upgrades and fixes that enhance almost all components of the platform. The release notes include hundreds of line items cataloging the improvements. In this webinar Ignite community members demonstrate and dissect new capabilities related to production maintenance, monitoring, and machine learning including:

Attendees will be introduced to the fundamental capabilities of in-memory computing platforms (IMCPs) in this Apache Ignite tutorial. IMCPs boost application performance and solve scalability problems by storing and processing unlimited data sets distributed across a cluster of interconnected machines.

Apache Ignite® and GridGain® allow you to perform fast calculations and run highly efficient queries over distributed data. Both Ignite and GridGain provide a flexible configuration that can help you make cluster operations more secure. In this webinar, we will cover the following security topics:

  • The secure connection between nodes (SSL/TLS)
  • User authentication
  • User authorization

Using live examples, we will go through the configurations for:

Change Data Capture (CDC) has become a very efficient way to automate and simplify the ETL process for data synchronization between disjointed databases. It is also a useful tool for efficient replication schemas. We will cover the fundamental principles and restrictions of CDC and review examples of how change data capture is implemented in real life use cases. By the end of this session you will understand:

With most machine learning (ML) and deep learning (DL) frameworks, it can take hours to move data and to train models. It can also be hard to scale with data sets that are increasingly frequently larger than the capacity of any single server. The size of the data can also make it hard to incrementally test and retrain models in near real-time to improve business results.

Deployment models for Apache Ignite® and applications connected to it vary depending on the target production environment. A bare metal environment provides the most flexibility and fewer restrictions on configuration options. When using Docker and Kubernetes environments, you need to decide how Ignite and its associated applications will interact before writing the first line of code.

To take full advantage of an in-memory platform, it’s often not enough to upload your data into a cluster and start querying it with key-value or SQL APIs. You need to distribute the data efficiently and tap into distributed computations that minimize data movement over the network.

In this webinar, you’ll see how to design and execute distributed computations considering all the pros and cons. In particular, the following will be covered:

Apache Ignite is a powerful in-memory computing platform. The Apache IgniteSink streaming connector enables users to inject Flink data into the Ignite cache. Join Saikat Maitra to learn how to build a simple data streaming application using Apache Flink and Apache Ignite. This stream processing topology will allow data streaming in a distributed, scalable, and fault-tolerant manner, which can process data sets consisting of virtually unlimited streams of events.

Communications and media companies have the opportunity to transform into more modern, digital providers to help drive renewed growth from new OTT services over IP, as well as from services for security and the Internet of Things (IoT). Download this industry brief to discover why telecommunications companies turn to in-memory computing for digital transformation and OTT services.
By 2020, Gartner expects the Internet of Things (IoT) to have over 20 billion connected things. Many companies have succeeded with IoT using GridGain and Apache Ignite to solve their challenges around speed, scalability, and real-time analytics. Download this application note to learn more.
FinTech companies face many of the same challenges as their largest customers. Their new channels and services, as well as core banking, insurance, and real estate systems, must deliver 100-1000x speed and scale compared to existing systems. Download this Industry Brief and learn how the GridGain In-Memory Computing Platform can address these issues and more.
Download this Application Note and learn how GridGain fosters digital transformation and improves the customer experience by adding speed, scalability, and in-memory computing to SQL architectures overwhelmed by the huge increase in data and the need to implement new business demands.
Leading banks, asset management firms, and fintech companies rely on the GridGain in-memory computing platform as a foundation for real-time risk analytics, portfolio management, and regulatory compliance. These companies use Gridgain to achieve a common, real-time view of risk by bringing together many types of information. Download this Industry Brief to learn how.
GridGain and Ignite provide an ideal underlying in-memory data management technology for Apache Spark because it supports both in-memory “data at rest” and “data in motion.” Learn how this simplifies many Spark tasks like stream ingestion, data preparation and storage, stream processing, state management, streaming analytics, and machine and deep learning.

This product comparison describes the advantages and benefits of migrating from DataSynapse to GridGain as an in-memory computing solution to power mission-critical and data-intensive applications.

This in-depth feature comparison shows how the most current versions of GridGain Professional Edition, Enterprise Edition, Ultimate Edition and Redis Enterprise (and their respective open source projects where relevant) compare in 25 categories.

Compares GridGain and Pivotal GemFire features in 25 areas: in-memory data grid functionality, caching, data querying, transactions, security and more.

This in-depth feature comparison shows how the most current versions of GridGain Professional Edition, Enterprise Edition, Ultimate Edition and Hazelcast (and their respective open source projects where relevant) compare in 25 different categories.

Compares GridGain and GigaSpaces features in 22 key areas: in-memory data grid functionality, caching, data querying, transactions, security and more.
Compares GridGain and Terracotta features in 22 key areas: in-memory data grid functionality, caching, data querying, transactions, security and more.

This in-depth feature comparison shows how the most current versions of GridGain Professional Edition, Enterprise Edition, Ultimate Edition and Oracle Coherence (and their respective open source projects where relevant) compare in 25 different categories.

In this video from the Bay Area In-Memory Computing Meetup on Wednesday, July 17, 2019, GridGain's Director of Product Management Greg Stachnick, discusses some of the in-memory computing cloud deployment best practices for in-memory data grid (IMDG) and in-memory database (IMDB) in the cloud. 
This IMCS Europe 2019 talk discusses the various components of Apache Ignite and GridGain, including memory storage, networking layer, compute grid, to help explain in-memory computing best practices for DevOps, high availability, proper testing, fault tolerance, and more.
This IMCS Europe 2019 video discusses some best practices for monitoring distributed in-memory computing systems, including how to monitor applications, cluster logs, cluster metrics, operating systems, and networks. It provides guidance on tools like Elasticsearch, Grafana, and GridGain Web Console.
This IMCS Europe 2019 talk discusses migrating an in-memory computing platform to the cloud. It covers best practices, special considerations, tools, and differences between public and private clouds.
This IMCS Europe 2019 keynote is a panel discussion of current and emerging trends in in-memory computing for enterprises looking to enable digital transformation.
This talk demonstrates how to implement integrating Apache Kafka with Apache Ignite in practice, explains the architectural reasoning and the benefits of real-time integration, and shares common usage patterns. The presenters build a streaming data pipeline using nothing but their bare hands, Apache Ignite, Kafka Connect, and KSQL.
GridGain Meetups provide the in-memory computing community with a venue to discuss in-memory computing issues, solutions, and examples. Our summertime-themed edition Meetup on June 26, 2019, featured three talks on analytics from GridGain, Confluent, Oracle, and Alluxio.
GridGain Meetups provide the in-memory computing community with a venue to discuss in-memory computing issues, solutions, and examples. Our summertime-themed edition Meetup on June 26, 2019, featured three talks on analytics from GridGain, Confluent, Oracle, and Alluxio.
In this IMCS Europe 2019 session, Denis Magda describes how Apache Ignite and GridGain as an in-memory computing platform can modernize existing data lake architectures, enabling real-time analytics that spans operational, historical, and streaming data sets.

Over the last decade, the 10x growth of transaction volumes, 50x growth in data volumes, and drive for real-time response and analytics has pushed relational databases beyond their limits. Scaling an existing RDBMS vertically with hardware is expensive and limited. Moving to NoSQL requires new skills and major changes to applications. Ripping out the existing RDBMS and replacing it with another RDBMS with a lower TCO is still risky.