public class BinaryClassificationMetricValues extends Object implements MetricValues
Constructor and Description |
---|
BinaryClassificationMetricValues(long tp,
long tn,
long fp,
long fn,
double rocauc)
Initialize an example by 4 metrics.
|
Modifier and Type | Method and Description |
---|---|
double |
accuracy()
Returns Accuracy.
|
double |
balancedAccuracy()
Returns Balanced accuracy.
|
double |
f1Score()
Returns F1-Score is the harmonic mean of Precision and Sensitivity.
|
double |
fallOut()
Returns Fall-out or False Positive Rate (FPR).
|
double |
fdr()
Returns False Discovery Rate (FDR).
|
double |
fn() |
double |
fp() |
double |
missRate()
Returns Miss Rate or False Negative Rate (FNR).
|
double |
npv()
Returns Negative Predictive Value (NPV).
|
double |
precision()
Returns Precision or Positive Predictive Value (PPV).
|
double |
recall()
Returns Sensitivity or True Positive Rate (TPR).
|
double |
rocauc()
Returns ROCAUC value.
|
double |
specificity()
Returns Specificity (SPC) or True Negative Rate (TNR).
|
double |
tn() |
double |
tp() |
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
toMap
public BinaryClassificationMetricValues(long tp, long tn, long fp, long fn, double rocauc)
tp
- True Positive (TP).tn
- True Negative (TN).fp
- False Positive (FP).fn
- False Negative (FN).public double tp()
public double tn()
public double fp()
public double fn()
public double recall()
public double specificity()
public double precision()
public double npv()
public double fallOut()
public double fdr()
public double missRate()
public double accuracy()
public double balancedAccuracy()
public double f1Score()
public double rocauc()
GridGain In-Memory Computing Platform : ver. 8.9.19 Release Date : April 10 2025