public class RegressionDataStream extends Object implements DataStreamGenerator
FILL_CACHE_BATCH_SIZE| Constructor and Description |
|---|
RegressionDataStream(int vectorSize,
IgniteFunction<Vector,Double> function,
double minXVal,
double maxXVal)
Creates an instance of RegressionDataStream.
|
| Modifier and Type | Method and Description |
|---|---|
Stream<LabeledVector<Double>> |
labeled() |
static RegressionDataStream |
twoDimensional(IgniteFunction<Double,Double> function,
double minXVal,
double maxXVal)
Creates two dimensional regression data stream.
|
static RegressionDataStream |
twoDimensional(IgniteFunction<Double,Double> function,
double minXVal,
double maxXVal,
long seed)
Creates two dimensional regression data stream.
|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitasDatasetBuilder, asDatasetBuilder, asDatasetBuilder, asMap, blur, fillCacheWithCustomKey, fillCacheWithVecHashAsKey, fillCacheWithVecUUIDAsKey, labeled, mapVectors, unlabeledpublic RegressionDataStream(int vectorSize,
IgniteFunction<Vector,Double> function,
double minXVal,
double maxXVal)
vectorSize - Vector size.function - Function.minXVal - Min x value.maxXVal - Max x value.public Stream<LabeledVector<Double>> labeled()
labeled in interface DataStreamGeneratorLabeledVector in according to dataset shape.public static RegressionDataStream twoDimensional(IgniteFunction<Double,Double> function, double minXVal, double maxXVal)
function - Double->double function.minXVal - Min x value.maxXVal - Max x value.public static RegressionDataStream twoDimensional(IgniteFunction<Double,Double> function, double minXVal, double maxXVal, long seed)
function - Double->double function.minXVal - Min x value.maxXVal - Max x value.seed - Seed.
GridGain In-Memory Computing Platform : ver. 8.9.26 Release Date : October 16 2025