L - Type of statistics aggregator for leaf values computing.S - Type of impurity computer specific for algorithm.T - Type of child of RandomForestTrainer using in with-methods.public abstract class RandomForestTrainer<L,S extends ImpurityComputer<BootstrappedVector,S>,T extends RandomForestTrainer<L,S,T>> extends SingleLabelDatasetTrainer<ModelsComposition>
DatasetTrainer.EmptyDatasetExceptionenvBuilder, environment| Constructor and Description |
|---|
RandomForestTrainer(List<FeatureMeta> meta)
Create an instance of RandomForestTrainer.
|
| Modifier and Type | Method and Description |
|---|---|
protected abstract ModelsComposition |
buildComposition(List<TreeRoot> models)
Returns composition of built trees.
|
protected abstract ImpurityHistogramsComputer<S> |
createImpurityHistogramsComputer()
Creates an instance of Histograms Computer corresponding to RF implementation.
|
protected abstract LeafValuesComputer<L> |
createLeafStatisticsAggregator()
Creates an instance of Leaf Statistics Aggregator corresponding to RF implementation.
|
<K,V> ModelsComposition |
fitWithInitializedDeployingContext(DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> preprocessor)
Trains model based on the specified data.
|
protected boolean |
init(Dataset<EmptyContext,BootstrappedDatasetPartition> dataset)
Init-step before learning.
|
protected ArrayList<TreeRoot> |
initTrees(Queue<TreeNode> treesQueue)
Creates list of trees.
|
protected abstract T |
instance() |
boolean |
isUpdateable(ModelsComposition mdl) |
protected <K,V> ModelsComposition |
updateModel(ModelsComposition mdl,
DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> preprocessor)
Trains new model taken previous one as a first approximation.
|
T |
withAmountOfTrees(int amountOfTrees) |
T |
withFeaturesCountSelectionStrgy(Function<List<FeatureMeta>,Integer> strgy) |
T |
withMaxDepth(int maxDepth) |
T |
withMinImpurityDelta(double minImpurityDelta) |
T |
withNodesToLearnSelectionStrgy(Function<Queue<TreeNode>,List<TreeNode>> strgy)
Sets strategy for selection nodes from learning queue in each iteration.
|
T |
withSeed(long seed) |
T |
withSubSampleSize(double subSampleSize) |
fit, fit, fit, fit, fit, fit, getLastTrainedModelOrThrowEmptyDatasetException, identityTrainer, learningEnvironment, update, update, update, update, update, withConvertedLabels, withEnvironmentBuilderpublic RandomForestTrainer(List<FeatureMeta> meta)
meta - Features Meta.public <K,V> ModelsComposition fitWithInitializedDeployingContext(DatasetBuilder<K,V> datasetBuilder, Preprocessor<K,V> preprocessor)
fitWithInitializedDeployingContext in class DatasetTrainer<ModelsComposition,Double>K - Type of a key in upstream data.V - Type of a value in upstream data.datasetBuilder - Dataset builder.preprocessor - Extractor of UpstreamEntry into LabeledVector.protected abstract T instance()
public T withAmountOfTrees(int amountOfTrees)
amountOfTrees - Count of trees.public T withSubSampleSize(double subSampleSize)
subSampleSize - Subsample size.public T withMaxDepth(int maxDepth)
maxDepth - Max depth.public T withMinImpurityDelta(double minImpurityDelta)
minImpurityDelta - Min impurity delta.public T withFeaturesCountSelectionStrgy(Function<List<FeatureMeta>,Integer> strgy)
strgy - Strgy.public T withNodesToLearnSelectionStrgy(Function<Queue<TreeNode>,List<TreeNode>> strgy)
strgy - Strgy.public T withSeed(long seed)
seed - Seed.protected boolean init(Dataset<EmptyContext,BootstrappedDatasetPartition> dataset)
dataset - Dataset.public boolean isUpdateable(ModelsComposition mdl)
isUpdateable in class DatasetTrainer<ModelsComposition,Double>mdl - Model.protected <K,V> ModelsComposition updateModel(ModelsComposition mdl, DatasetBuilder<K,V> datasetBuilder, Preprocessor<K,V> preprocessor)
updateModel in class DatasetTrainer<ModelsComposition,Double>K - Type of a key in upstream data.V - Type of a value in upstream data.mdl - Learned model.datasetBuilder - Dataset builder.preprocessor - Extractor of UpstreamEntry into LabeledVector.protected abstract ImpurityHistogramsComputer<S> createImpurityHistogramsComputer()
protected abstract LeafValuesComputer<L> createLeafStatisticsAggregator()
protected ArrayList<TreeRoot> initTrees(Queue<TreeNode> treesQueue)
treesQueue - Trees queue.protected abstract ModelsComposition buildComposition(List<TreeRoot> models)
models - Models.
GridGain In-Memory Computing Platform : ver. 8.9.26 Release Date : October 16 2025