public class TrainerTransformers extends Object
| Constructor and Description |
|---|
TrainerTransformers() |
| Modifier and Type | Method and Description |
|---|---|
static int[] |
getMapping(int featuresVectorSize,
int maximumFeaturesCntPerMdl,
long seed)
Get mapping R^featuresVectorSize -> R^maximumFeaturesCntPerMdl.
|
static <L> BaggedTrainer<L> |
makeBagged(DatasetTrainer<? extends IgniteModel,L> trainer,
int ensembleSize,
double subsampleRatio,
PredictionsAggregator aggregator)
Add bagging logic to a given trainer.
|
static <M extends IgniteModel<Vector,Double>,L> |
makeBagged(DatasetTrainer<M,L> trainer,
int ensembleSize,
double subsampleRatio,
int featureVectorSize,
int featuresSubspaceDim,
PredictionsAggregator aggregator)
Add bagging logic to a given trainer.
|
public static <L> BaggedTrainer<L> makeBagged(DatasetTrainer<? extends IgniteModel,L> trainer, int ensembleSize, double subsampleRatio, PredictionsAggregator aggregator)
L - Type of labels.ensembleSize - Size of ensemble.subsampleRatio - Subsample ratio to whole dataset.aggregator - Aggregator.public static <M extends IgniteModel<Vector,Double>,L> BaggedTrainer<L> makeBagged(DatasetTrainer<M,L> trainer, int ensembleSize, double subsampleRatio, int featureVectorSize, int featuresSubspaceDim, PredictionsAggregator aggregator)
M - Type of one model in ensemble.L - Type of labels.ensembleSize - Size of ensemble.subsampleRatio - Subsample ratio to whole dataset.aggregator - Aggregator.featureVectorSize - Feature vector dimensionality.featuresSubspaceDim - Feature subspace dimensionality.public static int[] getMapping(int featuresVectorSize,
int maximumFeaturesCntPerMdl,
long seed)
featuresVectorSize - Features vector size (Dimension of initial space).maximumFeaturesCntPerMdl - Dimension of target space.seed - Seed.
GridGain In-Memory Computing Platform : ver. 8.9.26 Release Date : October 16 2025