I - Input type of model produced by this trainer.O - Output type of model produced by this trainer.IW - Input type of model produced by wrapped trainer.OW - Output type of model produced by wrapped trainer.M - Type of model produced by wrapped model.L - Type of labels.public class AdaptableDatasetTrainer<I,O,IW,OW,M extends IgniteModel<IW,OW>,L> extends DatasetTrainer<AdaptableDatasetModel<I,O,IW,OW,M>,L>
DatasetTrainer. Produces model which is composition of
form before `andThen` wMdl `andThen` after where wMdl is model produced by wrapped trainer.DatasetTrainer.EmptyDatasetExceptionenvBuilder, environment| Modifier and Type | Method and Description |
|---|---|
AdaptableDatasetTrainer<I,O,IW,OW,M,L> |
afterFeatureExtractor(IgniteFunction<Vector,Vector> after)
Specify function which will be applied after feature extractor.
|
AdaptableDatasetTrainer<I,O,IW,OW,M,L> |
afterLabelExtractor(IgniteFunction<L,L> after)
Specify function which will be applied after label extractor.
|
<O1> AdaptableDatasetTrainer<I,O1,IW,OW,M,L> |
afterTrainedModel(IgniteFunction<O,O1> after)
Let this trainer produce model
mdl. |
<O1,M1 extends IgniteModel<O,O1>> |
andThen(DatasetTrainer<M1,L> tr,
IgniteFunction<AdaptableDatasetModel<I,O,IW,OW,M>,IgniteFunction<LabeledVector<L>,LabeledVector<L>>> datasetMappingProducer)
Create a
TrainersSequentialComposition of whis trainer and specified trainer. |
<I1> AdaptableDatasetTrainer<I1,O,IW,OW,M,L> |
beforeTrainedModel(IgniteFunction<I1,I> before)
Let this trainer produce model
mdl. |
<K,V> AdaptableDatasetModel<I,O,IW,OW,M> |
fitWithInitializedDeployingContext(DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> extractor)
Trains model based on the specified data.
|
boolean |
isUpdateable(AdaptableDatasetModel<I,O,IW,OW,M> mdl) |
static <I,O,M extends IgniteModel<I,O>,L> |
of(DatasetTrainer<M,L> wrapped)
Construct instance of this class from a given
DatasetTrainer. |
protected <K,V> AdaptableDatasetModel<I,O,IW,OW,M> |
updateModel(AdaptableDatasetModel<I,O,IW,OW,M> mdl,
DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> extractor)
Trains new model taken previous one as a first approximation.
|
AdaptableDatasetTrainer<I,O,IW,OW,M,L> |
withDatasetMapping(DatasetMapping<L,L> mapping)
Specify
DatasetMapping which will be applied to dataset before fitting and updating. |
AdaptableDatasetTrainer<I,O,IW,OW,M,L> |
withUpstreamTransformerBuilder(UpstreamTransformerBuilder upstreamTransformerBuilder)
Specify which
UpstreamTransformerBuilder will be used. |
fit, fit, fit, fit, fit, fit, getLastTrainedModelOrThrowEmptyDatasetException, identityTrainer, learningEnvironment, update, update, update, update, update, withConvertedLabels, withEnvironmentBuilderpublic static <I,O,M extends IgniteModel<I,O>,L> AdaptableDatasetTrainer<I,O,I,O,M,L> of(DatasetTrainer<M,L> wrapped)
DatasetTrainer.I - Input type of wrapped trainer.O - Output type of wrapped trainer.M - Type of model produced by wrapped trainer.L - Type of labels.wrapped - Wrapped trainer.public <K,V> AdaptableDatasetModel<I,O,IW,OW,M> fitWithInitializedDeployingContext(DatasetBuilder<K,V> datasetBuilder, Preprocessor<K,V> extractor)
fitWithInitializedDeployingContext in class DatasetTrainer<AdaptableDatasetModel<I,O,IW,OW,M extends IgniteModel<IW,OW>>,L>K - Type of a key in upstream data.V - Type of a value in upstream data.datasetBuilder - Dataset builder.extractor - Extractor of UpstreamEntry into LabeledVector.public boolean isUpdateable(AdaptableDatasetModel<I,O,IW,OW,M> mdl)
isUpdateable in class DatasetTrainer<AdaptableDatasetModel<I,O,IW,OW,M extends IgniteModel<IW,OW>>,L>mdl - Model.protected <K,V> AdaptableDatasetModel<I,O,IW,OW,M> updateModel(AdaptableDatasetModel<I,O,IW,OW,M> mdl, DatasetBuilder<K,V> datasetBuilder, Preprocessor<K,V> extractor)
updateModel in class DatasetTrainer<AdaptableDatasetModel<I,O,IW,OW,M extends IgniteModel<IW,OW>>,L>K - Type of a key in upstream data.V - Type of a value in upstream data.mdl - Learned model.datasetBuilder - Dataset builder.extractor - Extractor of UpstreamEntry into LabeledVector.public <O1> AdaptableDatasetTrainer<I,O1,IW,OW,M,L> afterTrainedModel(IgniteFunction<O,O1> after)
mdl. This method produces a trainer which produces mdl1, where
mdl1 = mdl `andThen` after.O1 - Type of produced model output.after - Function inserted before produced model.DatasetTrainer which produces composition of specified function and model produced by
original trainer.public <I1> AdaptableDatasetTrainer<I1,O,IW,OW,M,L> beforeTrainedModel(IgniteFunction<I1,I> before)
mdl. This method produces a trainer which produces mdl1, where
mdl1 = f `andThen` mdl.I1 - Type of produced model input.before - Function inserted before produced model.DatasetTrainer which produces composition of specified function and model produced by
original trainer.public AdaptableDatasetTrainer<I,O,IW,OW,M,L> withDatasetMapping(DatasetMapping<L,L> mapping)
DatasetMapping which will be applied to dataset before fitting and updating.mapping - DatasetMapping which will be applied to dataset before fitting and updating.public <O1,M1 extends IgniteModel<O,O1>> TrainersSequentialComposition<I,O,O1,L> andThen(DatasetTrainer<M1,L> tr, IgniteFunction<AdaptableDatasetModel<I,O,IW,OW,M>,IgniteFunction<LabeledVector<L>,LabeledVector<L>>> datasetMappingProducer)
TrainersSequentialComposition of whis trainer and specified trainer.O1 - Type of output of trainer to compose with.M1 - Type of model produced by the trainer to compose with.tr - Trainer to compose with.datasetMappingProducer - DatasetMapping producer specifying dependency between this trainer and
trainer to compose with.TrainersSequentialComposition of whis trainer and specified trainer.public AdaptableDatasetTrainer<I,O,IW,OW,M,L> afterFeatureExtractor(IgniteFunction<Vector,Vector> after)
after - Function which will be applied after feature extractor.public AdaptableDatasetTrainer<I,O,IW,OW,M,L> afterLabelExtractor(IgniteFunction<L,L> after)
after - Function which will be applied after label extractor.public AdaptableDatasetTrainer<I,O,IW,OW,M,L> withUpstreamTransformerBuilder(UpstreamTransformerBuilder upstreamTransformerBuilder)
UpstreamTransformerBuilder will be used.upstreamTransformerBuilder - UpstreamTransformerBuilder to use.UpstreamTransformerBuilder will be used.
GridGain In-Memory Computing Platform : ver. 8.9.26 Release Date : October 16 2025