public class SVMLinearClassificationTrainer extends SingleLabelDatasetTrainer<SVMLinearClassificationModel>
This trainer takes input as Labeled Dataset with 0 and 1 labels for two classes and makes binary classification.
The paper about this algorithm could be found here https://arxiv.org/abs/1409.1458.DatasetTrainer.EmptyDatasetExceptionenvBuilder, environment| Constructor and Description |
|---|
SVMLinearClassificationTrainer() |
| Modifier and Type | Method and Description |
|---|---|
<K,V> SVMLinearClassificationModel |
fitWithInitializedDeployingContext(DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> preprocessor)
Trains model based on the specified data.
|
int |
getAmountOfIterations()
Get the amount of outer iterations of SCDA algorithm.
|
int |
getAmountOfLocIterations()
Get the amount of local iterations of SCDA algorithm.
|
double |
getLambda()
Get the regularization lambda.
|
long |
getSeed()
Get the seed number.
|
boolean |
isUpdateable(SVMLinearClassificationModel mdl) |
protected <K,V> SVMLinearClassificationModel |
updateModel(SVMLinearClassificationModel mdl,
DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> preprocessor)
Trains new model taken previous one as a first approximation.
|
SVMLinearClassificationTrainer |
withAmountOfIterations(int amountOfIterations)
Set up the amount of outer iterations of SCDA algorithm.
|
SVMLinearClassificationTrainer |
withAmountOfLocIterations(int amountOfLocIterations)
Set up the amount of local iterations of SCDA algorithm.
|
SVMLinearClassificationTrainer |
withLambda(double lambda)
Set up the regularization parameter.
|
SVMLinearClassificationTrainer |
withSeed(long seed)
Set up the seed.
|
fit, fit, fit, fit, fit, fit, getLastTrainedModelOrThrowEmptyDatasetException, identityTrainer, learningEnvironment, update, update, update, update, update, withConvertedLabels, withEnvironmentBuilderpublic <K,V> SVMLinearClassificationModel fitWithInitializedDeployingContext(DatasetBuilder<K,V> datasetBuilder, Preprocessor<K,V> preprocessor)
fitWithInitializedDeployingContext in class DatasetTrainer<SVMLinearClassificationModel,Double>K - Type of a key in upstream data.V - Type of a value in upstream data.datasetBuilder - Dataset builder.preprocessor - Extractor of UpstreamEntry into LabeledVector.protected <K,V> SVMLinearClassificationModel updateModel(SVMLinearClassificationModel mdl, DatasetBuilder<K,V> datasetBuilder, Preprocessor<K,V> preprocessor)
updateModel in class DatasetTrainer<SVMLinearClassificationModel,Double>K - Type of a key in upstream data.V - Type of a value in upstream data.mdl - Learned model.datasetBuilder - Dataset builder.preprocessor - Extractor of UpstreamEntry into LabeledVector.public boolean isUpdateable(SVMLinearClassificationModel mdl)
isUpdateable in class DatasetTrainer<SVMLinearClassificationModel,Double>mdl - Model.public SVMLinearClassificationTrainer withLambda(double lambda)
lambda - The regularization parameter. Should be more than 0.0.public double getLambda()
public int getAmountOfIterations()
public SVMLinearClassificationTrainer withAmountOfIterations(int amountOfIterations)
amountOfIterations - The parameter value.public int getAmountOfLocIterations()
public SVMLinearClassificationTrainer withAmountOfLocIterations(int amountOfLocIterations)
amountOfLocIterations - The parameter value.public long getSeed()
public SVMLinearClassificationTrainer withSeed(long seed)
seed - The parameter value.
GridGain In-Memory Computing Platform : ver. 8.9.26 Release Date : October 16 2025