public class LinearRegressionSGDTrainer<P extends Serializable> extends SingleLabelDatasetTrainer<LinearRegressionModel>
DatasetTrainer.EmptyDatasetExceptionenvBuilder, environment| Constructor and Description |
|---|
LinearRegressionSGDTrainer(UpdatesStrategy<? super MultilayerPerceptron,P> updatesStgy)
Constructs a new instance of linear regression SGD trainer.
|
LinearRegressionSGDTrainer(UpdatesStrategy<? super MultilayerPerceptron,P> updatesStgy,
int maxIterations,
int batchSize,
int locIterations,
long seed)
Constructs a new instance of linear regression SGD trainer.
|
| Modifier and Type | Method and Description |
|---|---|
<K,V> LinearRegressionModel |
fitWithInitializedDeployingContext(DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> extractor)
Trains model based on the specified data.
|
int |
getBatchSize()
Get the batch size.
|
int |
getLocIterations()
Get the amount of local iterations.
|
int |
getMaxIterations()
Get the max amount of iterations.
|
long |
getSeed()
Get the seed for random generator.
|
UpdatesStrategy<? super MultilayerPerceptron,P> |
getUpdatesStgy()
Get the update strategy.
|
boolean |
isUpdateable(LinearRegressionModel mdl) |
protected <K,V> LinearRegressionModel |
updateModel(LinearRegressionModel mdl,
DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> extractor)
Trains new model taken previous one as a first approximation.
|
LinearRegressionSGDTrainer<P> |
withBatchSize(int batchSize)
Set up the batchSize parameter.
|
LinearRegressionSGDTrainer<P> |
withLocIterations(int amountOfLocIterations)
Set up the amount of local iterations of SGD algorithm.
|
LinearRegressionSGDTrainer<P> |
withMaxIterations(int maxIterations)
Set up the max amount of iterations before convergence.
|
LinearRegressionSGDTrainer<P> |
withSeed(long seed)
Set up the random seed parameter.
|
fit, fit, fit, fit, fit, fit, getLastTrainedModelOrThrowEmptyDatasetException, identityTrainer, learningEnvironment, update, update, update, update, update, withConvertedLabels, withEnvironmentBuilderpublic LinearRegressionSGDTrainer(UpdatesStrategy<? super MultilayerPerceptron,P> updatesStgy, int maxIterations, int batchSize, int locIterations, long seed)
updatesStgy - Update strategy.maxIterations - Max number of iteration.batchSize - Batch size.locIterations - Number of local iterations.seed - Seed for random generator.public LinearRegressionSGDTrainer(UpdatesStrategy<? super MultilayerPerceptron,P> updatesStgy)
public <K,V> LinearRegressionModel fitWithInitializedDeployingContext(DatasetBuilder<K,V> datasetBuilder, Preprocessor<K,V> extractor)
fitWithInitializedDeployingContext in class DatasetTrainer<LinearRegressionModel,Double>K - Type of a key in upstream data.V - Type of a value in upstream data.datasetBuilder - Dataset builder.extractor - Extractor of UpstreamEntry into LabeledVector.protected <K,V> LinearRegressionModel updateModel(LinearRegressionModel mdl, DatasetBuilder<K,V> datasetBuilder, Preprocessor<K,V> extractor)
updateModel in class DatasetTrainer<LinearRegressionModel,Double>K - Type of a key in upstream data.V - Type of a value in upstream data.mdl - Learned model.datasetBuilder - Dataset builder.extractor - Extractor of UpstreamEntry into LabeledVector.public boolean isUpdateable(LinearRegressionModel mdl)
isUpdateable in class DatasetTrainer<LinearRegressionModel,Double>mdl - Model.public LinearRegressionSGDTrainer<P> withMaxIterations(int maxIterations)
maxIterations - The parameter value.public LinearRegressionSGDTrainer<P> withBatchSize(int batchSize)
batchSize - The size of learning batch.public LinearRegressionSGDTrainer<P> withLocIterations(int amountOfLocIterations)
amountOfLocIterations - The parameter value.public LinearRegressionSGDTrainer<P> withSeed(long seed)
seed - Seed for random generator.public UpdatesStrategy<? super MultilayerPerceptron,P> getUpdatesStgy()
public int getMaxIterations()
public int getBatchSize()
public int getLocIterations()
public long getSeed()
GridGain In-Memory Computing Platform : ver. 8.9.26 Release Date : October 16 2025