K - Type of a key in upstream data.O - Type of an object of recommendation.S - Type of a subject of recommendation.Z - Type of object-subject pair.public class RecommendationDatasetDataBuilder<K,O extends Serializable,S extends Serializable,Z extends ObjectSubjectRatingTriplet<O,S>> extends Object implements PartitionDataBuilder<K,Z,EmptyContext,RecommendationDatasetData<O,S>>
data builder that makes SimpleDatasetData.| Constructor and Description |
|---|
RecommendationDatasetDataBuilder() |
| Modifier and Type | Method and Description |
|---|---|
RecommendationDatasetData<O,S> |
build(LearningEnvironment env,
Iterator<UpstreamEntry<K,Z>> upstreamData,
long upstreamDataSize,
EmptyContext ctx)
Builds a new partition
data from a partition upstream data and partition context. |
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitandThen, buildpublic RecommendationDatasetData<O,S> build(LearningEnvironment env, Iterator<UpstreamEntry<K,Z>> upstreamData, long upstreamDataSize, EmptyContext ctx)
data from a partition upstream data and partition context.
Important: there is no guarantee that there will be no more than one UpstreamEntry with given key,
UpstreamEntry should be thought rather as a container saving all data from upstream, but omitting uniqueness
constraint. This constraint is omitted to allow upstream data transformers in DatasetBuilder replicating
entries. For example it can be useful for bootstrapping.build in interface PartitionDataBuilder<K,Z extends ObjectSubjectRatingTriplet<O,S>,EmptyContext,RecommendationDatasetData<O extends Serializable,S extends Serializable>>env - Learning environment.upstreamData - Partition upstream data.upstreamDataSize - Partition upstream data size.ctx - Partition context.data.
GridGain In-Memory Computing Platform : ver. 8.9.26 Release Date : October 16 2025