K - Type of a key in upstream data.V - Type of a value in upstream data.public class Pipeline<K,V,C extends Serializable,L> extends Object
fit() method is called, the stages are executed in order.| Constructor and Description |
|---|
Pipeline() |
| Modifier and Type | Method and Description |
|---|---|
Pipeline<K,V,C,L> |
addPreprocessingTrainer(PreprocessingTrainer preprocessingTrainer)
Adds a preprocessor.
|
Pipeline<K,V,C,L> |
addTrainer(DatasetTrainer trainer)
Adds a trainer.
|
Pipeline<K,V,C,L> |
addVectorizer(Vectorizer<K,V,C,L> vectorizer) |
PipelineMdl<K,V> |
fit(DatasetBuilder datasetBuilder)
Fits the pipeline to the input dataset builder.
|
PipelineMdl<K,V> |
fit(Ignite ignite,
IgniteCache<K,V> cache)
Fits the pipeline to the input cache.
|
PipelineMdl<K,V> |
fit(Map<K,V> data,
int parts)
Fits the pipeline to the input mock data.
|
DatasetTrainer |
getTrainer()
Returns trainer.
|
void |
setEnvironmentBuilder(LearningEnvironmentBuilder envBuilder)
Set learning environment builder.
|
public Pipeline<K,V,C,L> addVectorizer(Vectorizer<K,V,C,L> vectorizer)
vectorizer - Vectorizer.public Pipeline<K,V,C,L> addPreprocessingTrainer(PreprocessingTrainer preprocessingTrainer)
preprocessingTrainer - The parameter value.public Pipeline<K,V,C,L> addTrainer(DatasetTrainer trainer)
trainer - The parameter value.public DatasetTrainer getTrainer()
public PipelineMdl<K,V> fit(Ignite ignite, IgniteCache<K,V> cache)
ignite - Ignite instance.cache - Ignite cache with upstream data.public void setEnvironmentBuilder(LearningEnvironmentBuilder envBuilder)
envBuilder - Learning environment builder.public PipelineMdl<K,V> fit(Map<K,V> data, int parts)
data - Data.parts - Number of partitions.public PipelineMdl<K,V> fit(DatasetBuilder datasetBuilder)
GridGain In-Memory Computing Platform : ver. 8.9.26 Release Date : October 16 2025