public class GaussianNaiveBayesTrainer extends SingleLabelDatasetTrainer<GaussianNaiveBayesModel>
setPriorProbabilities or withEquiprobableClasses. If equiprobableClasses is set, the probabilities of all classes will be 1/k, where k is classes count.DatasetTrainer.EmptyDatasetExceptionenvBuilder, environment| Constructor and Description |
|---|
GaussianNaiveBayesTrainer() |
| Modifier and Type | Method and Description |
|---|---|
<K,V> GaussianNaiveBayesModel |
fitWithInitializedDeployingContext(DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> extractor)
Trains model based on the specified data.
|
boolean |
isUpdateable(GaussianNaiveBayesModel mdl) |
GaussianNaiveBayesTrainer |
resetSettings()
Sets default settings.
|
GaussianNaiveBayesTrainer |
setPriorProbabilities(double[] priorProbabilities)
Sets prior probabilities.
|
protected <K,V> GaussianNaiveBayesModel |
updateModel(GaussianNaiveBayesModel mdl,
DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> extractor)
Trains new model taken previous one as a first approximation.
|
GaussianNaiveBayesTrainer |
withEnvironmentBuilder(LearningEnvironmentBuilder envBuilder)
Changes learning Environment.
|
GaussianNaiveBayesTrainer |
withEquiprobableClasses()
Sets equal probability for all classes.
|
fit, fit, fit, fit, fit, fit, getLastTrainedModelOrThrowEmptyDatasetException, identityTrainer, learningEnvironment, update, update, update, update, update, withConvertedLabelspublic <K,V> GaussianNaiveBayesModel fitWithInitializedDeployingContext(DatasetBuilder<K,V> datasetBuilder, Preprocessor<K,V> extractor)
fitWithInitializedDeployingContext in class DatasetTrainer<GaussianNaiveBayesModel,Double>K - Type of a key in upstream data.V - Type of a value in upstream data.datasetBuilder - Dataset builder.extractor - Extractor of UpstreamEntry into LabeledVector.public boolean isUpdateable(GaussianNaiveBayesModel mdl)
isUpdateable in class DatasetTrainer<GaussianNaiveBayesModel,Double>mdl - Model.public GaussianNaiveBayesTrainer withEnvironmentBuilder(LearningEnvironmentBuilder envBuilder)
withEnvironmentBuilder in class DatasetTrainer<GaussianNaiveBayesModel,Double>envBuilder - Learning environment builder.protected <K,V> GaussianNaiveBayesModel updateModel(GaussianNaiveBayesModel mdl, DatasetBuilder<K,V> datasetBuilder, Preprocessor<K,V> extractor)
updateModel in class DatasetTrainer<GaussianNaiveBayesModel,Double>K - Type of a key in upstream data.V - Type of a value in upstream data.mdl - Learned model.datasetBuilder - Dataset builder.extractor - Extractor of UpstreamEntry into LabeledVector.public GaussianNaiveBayesTrainer withEquiprobableClasses()
public GaussianNaiveBayesTrainer setPriorProbabilities(double[] priorProbabilities)
public GaussianNaiveBayesTrainer resetSettings()
GridGain In-Memory Computing Platform : ver. 8.9.26 Release Date : October 16 2025