public class DiscreteNaiveBayesTrainer extends SingleLabelDatasetTrainer<DiscreteNaiveBayesModel>
setPriorProbabilities or withEquiprobableClasses. If
equiprobableClasses is set, the probalilities of all classes will be 1/k, where k is classes
count. Also, the trainer converts feature to discrete values by using bucketThresholds.DatasetTrainer.EmptyDatasetExceptionenvBuilder, environment| Constructor and Description |
|---|
DiscreteNaiveBayesTrainer() |
| Modifier and Type | Method and Description |
|---|---|
<K,V> DiscreteNaiveBayesModel |
fitWithInitializedDeployingContext(DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> extractor)
Trains model based on the specified data.
|
boolean |
isUpdateable(DiscreteNaiveBayesModel mdl) |
DiscreteNaiveBayesTrainer |
resetProbabilitiesSettings()
Sets default settings
equiprobableClasses to false and removes priorProbabilities. |
DiscreteNaiveBayesTrainer |
setBucketThresholds(double[][] bucketThresholds)
Sets buckest borders.
|
DiscreteNaiveBayesTrainer |
setPriorProbabilities(double[] priorProbabilities)
Sets prior probabilities.
|
protected <K,V> DiscreteNaiveBayesModel |
updateModel(DiscreteNaiveBayesModel mdl,
DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> extractor)
Trains new model taken previous one as a first approximation.
|
DiscreteNaiveBayesTrainer |
withEquiprobableClasses()
Sets equal probability for all classes.
|
fit, fit, fit, fit, fit, fit, getLastTrainedModelOrThrowEmptyDatasetException, identityTrainer, learningEnvironment, update, update, update, update, update, withConvertedLabels, withEnvironmentBuilderpublic <K,V> DiscreteNaiveBayesModel fitWithInitializedDeployingContext(DatasetBuilder<K,V> datasetBuilder, Preprocessor<K,V> extractor)
fitWithInitializedDeployingContext in class DatasetTrainer<DiscreteNaiveBayesModel,Double>K - Type of a key in upstream data.V - Type of a value in upstream data.datasetBuilder - Dataset builder.extractor - Extractor of UpstreamEntry into LabeledVector.public boolean isUpdateable(DiscreteNaiveBayesModel mdl)
isUpdateable in class DatasetTrainer<DiscreteNaiveBayesModel,Double>mdl - Model.protected <K,V> DiscreteNaiveBayesModel updateModel(DiscreteNaiveBayesModel mdl, DatasetBuilder<K,V> datasetBuilder, Preprocessor<K,V> extractor)
updateModel in class DatasetTrainer<DiscreteNaiveBayesModel,Double>K - Type of a key in upstream data.V - Type of a value in upstream data.mdl - Learned model.datasetBuilder - Dataset builder.extractor - Extractor of UpstreamEntry into LabeledVector.public DiscreteNaiveBayesTrainer withEquiprobableClasses()
public DiscreteNaiveBayesTrainer setPriorProbabilities(double[] priorProbabilities)
public DiscreteNaiveBayesTrainer setBucketThresholds(double[][] bucketThresholds)
public DiscreteNaiveBayesTrainer resetProbabilitiesSettings()
equiprobableClasses to false and removes priorProbabilities.
GridGain In-Memory Computing Platform : ver. 8.9.26 Release Date : October 16 2025