public class ANNClassificationTrainer extends SingleLabelDatasetTrainer<ANNClassificationModel>
| Modifier and Type | Class and Description |
|---|---|
static class |
ANNClassificationTrainer.CentroidStat
Service class used for statistics.
|
DatasetTrainer.EmptyDatasetExceptionenvBuilder, environment| Constructor and Description |
|---|
ANNClassificationTrainer() |
| Modifier and Type | Method and Description |
|---|---|
<K,V> ANNClassificationModel |
fitWithInitializedDeployingContext(DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> extractor)
Trains model based on the specified data.
|
DistanceMeasure |
getDistance()
Gets the distance.
|
double |
getEpsilon()
Gets the epsilon.
|
int |
getK()
Gets the amount of clusters.
|
int |
getMaxIterations()
Gets the max number of iterations before convergence.
|
boolean |
isUpdateable(ANNClassificationModel mdl) |
protected <K,V> ANNClassificationModel |
updateModel(ANNClassificationModel mdl,
DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> extractor)
Trains new model taken previous one as a first approximation.
|
ANNClassificationTrainer |
withDistance(DistanceMeasure distance)
Set up the distance.
|
ANNClassificationTrainer |
withEnvironmentBuilder(LearningEnvironmentBuilder envBuilder)
Changes learning Environment.
|
ANNClassificationTrainer |
withEpsilon(double epsilon)
Set up the epsilon.
|
ANNClassificationTrainer |
withK(int k)
Set up the amount of clusters.
|
ANNClassificationTrainer |
withMaxIterations(int maxIterations)
Set up the max number of iterations before convergence.
|
fit, fit, fit, fit, fit, fit, getLastTrainedModelOrThrowEmptyDatasetException, identityTrainer, learningEnvironment, update, update, update, update, update, withConvertedLabelspublic <K,V> ANNClassificationModel fitWithInitializedDeployingContext(DatasetBuilder<K,V> datasetBuilder, Preprocessor<K,V> extractor)
fitWithInitializedDeployingContext in class DatasetTrainer<ANNClassificationModel,Double>K - Type of a key in upstream data.V - Type of a value in upstream data.datasetBuilder - Dataset builder.extractor - Mapping from upstream entry to LabeledVector.protected <K,V> ANNClassificationModel updateModel(ANNClassificationModel mdl, DatasetBuilder<K,V> datasetBuilder, Preprocessor<K,V> extractor)
updateModel in class DatasetTrainer<ANNClassificationModel,Double>K - Type of a key in upstream data.V - Type of a value in upstream data.mdl - Learned model.datasetBuilder - Dataset builder.extractor - Extractor of UpstreamEntry into LabeledVector.public boolean isUpdateable(ANNClassificationModel mdl)
isUpdateable in class DatasetTrainer<ANNClassificationModel,Double>mdl - Model.public ANNClassificationTrainer withEnvironmentBuilder(LearningEnvironmentBuilder envBuilder)
withEnvironmentBuilder in class DatasetTrainer<ANNClassificationModel,Double>envBuilder - Learning environment builder.public int getK()
public ANNClassificationTrainer withK(int k)
k - The parameter value.public int getMaxIterations()
public ANNClassificationTrainer withMaxIterations(int maxIterations)
maxIterations - The parameter value.public double getEpsilon()
public ANNClassificationTrainer withEpsilon(double epsilon)
epsilon - The parameter value.public DistanceMeasure getDistance()
public ANNClassificationTrainer withDistance(DistanceMeasure distance)
distance - The parameter value.
GridGain In-Memory Computing Platform : ver. 8.9.26 Release Date : October 16 2025