O - Type of aggregator model output.L - Type of labels.AM - Type of aggregator model.public class StackedVectorDatasetTrainer<O,AM extends IgniteModel<Vector,O>,L> extends SimpleStackedDatasetTrainer<Vector,O,AM,L>
StackedDatasetTrainer with Vector as submodels input and output.DatasetTrainer.EmptyDatasetExceptionenvBuilder, environment| Constructor and Description |
|---|
StackedVectorDatasetTrainer()
Constructs instance of this class.
|
StackedVectorDatasetTrainer(DatasetTrainer<AM,L> aggregatingTrainer)
Constructs instance of this class.
|
| Modifier and Type | Method and Description |
|---|---|
<M1 extends IgniteModel<Matrix,Matrix>> |
addMatrix2MatrixTrainer(DatasetTrainer<M1,L> trainer)
|
<M1 extends IgniteModel<Vector,Vector>> |
addTrainer(DatasetTrainer<M1,L> trainer)
Adds submodel trainer along with converters needed on training and inference stages.
|
<M1 extends IgniteModel<Vector,Double>> |
addTrainerWithDoubleOutput(DatasetTrainer<M1,L> trainer)
Shortcut for adding trainer
Vector -> Double where this trainer is treated as Vector -> Vector, where
output Vector is constructed by wrapping double value. |
StackedVectorDatasetTrainer<O,AM,L> |
withAggregatorInputMerger(IgniteBinaryOperator<Vector> merger)
Specify binary operator used to merge submodels outputs to one.
|
StackedVectorDatasetTrainer<O,AM,L> |
withAggregatorTrainer(DatasetTrainer<AM,L> aggregatorTrainer)
Specify aggregator trainer.
|
<L1> StackedVectorDatasetTrainer<O,AM,L1> |
withConvertedLabels(IgniteFunction<L1,L> new2Old)
Creates
DatasetTrainer with same training logic, but able to accept labels of given new type of labels. |
StackedVectorDatasetTrainer<O,AM,L> |
withEnvironmentBuilder(LearningEnvironmentBuilder envBuilder)
Changes learning Environment.
|
StackedVectorDatasetTrainer<O,AM,L> |
withOriginalFeaturesDropped()
Drop original features during training and inference.
|
StackedVectorDatasetTrainer<O,AM,L> |
withOriginalFeaturesKept()
Keep original features using
IgniteFunction.identity() as submodelInput2AggregatingInputConverter. |
StackedVectorDatasetTrainer<O,AM,L> |
withOriginalFeaturesKept(IgniteFunction<Vector,Vector> submodelInput2AggregatingInputConverter)
Keep original features during training and propagate submodels input to aggregator during inference
using given function.
|
StackedVectorDatasetTrainer<O,AM,L> |
withSubmodelOutput2VectorConverter(IgniteFunction<Vector,Vector> submodelOutput2VectorConverter)
Set function used for conversion of submodel output to
Vector. |
StackedVectorDatasetTrainer<O,AM,L> |
withVector2SubmodelInputConverter(IgniteFunction<Vector,Vector> vector2SubmodelInputConverter)
Set function used for conversion of
Vector to submodel input. |
fitWithInitializedDeployingContext, isUpdateable, update, updateModelfit, fit, fit, fit, fit, fit, getLastTrainedModelOrThrowEmptyDatasetException, identityTrainer, learningEnvironment, update, update, update, updatepublic StackedVectorDatasetTrainer(DatasetTrainer<AM,L> aggregatingTrainer)
aggregatingTrainer - Aggregator trainer.public StackedVectorDatasetTrainer()
public <M1 extends IgniteModel<Vector,Vector>> StackedVectorDatasetTrainer<O,AM,L> addTrainer(DatasetTrainer<M1,L> trainer)
addTrainer in class SimpleStackedDatasetTrainer<Vector,O,AM extends IgniteModel<Vector,O>,L>trainer - Submodel trainer.public StackedVectorDatasetTrainer<O,AM,L> withAggregatorTrainer(DatasetTrainer<AM,L> aggregatorTrainer)
withAggregatorTrainer in class SimpleStackedDatasetTrainer<Vector,O,AM extends IgniteModel<Vector,O>,L>aggregatorTrainer - Aggregator trainer.public StackedVectorDatasetTrainer<O,AM,L> withOriginalFeaturesKept()
IgniteFunction.identity() as submodelInput2AggregatingInputConverter.withOriginalFeaturesKept in class SimpleStackedDatasetTrainer<Vector,O,AM extends IgniteModel<Vector,O>,L>public StackedVectorDatasetTrainer<O,AM,L> withOriginalFeaturesDropped()
withOriginalFeaturesDropped in class SimpleStackedDatasetTrainer<Vector,O,AM extends IgniteModel<Vector,O>,L>public StackedVectorDatasetTrainer<O,AM,L> withOriginalFeaturesKept(IgniteFunction<Vector,Vector> submodelInput2AggregatingInputConverter)
IS = Vector), or, more generally,
some IS parameters which are not reflected just by its type. So converter should be
written accordingly.withOriginalFeaturesKept in class SimpleStackedDatasetTrainer<Vector,O,AM extends IgniteModel<Vector,O>,L>submodelInput2AggregatingInputConverter - Function used to propagate submodels input to aggregator.public StackedVectorDatasetTrainer<O,AM,L> withSubmodelOutput2VectorConverter(IgniteFunction<Vector,Vector> submodelOutput2VectorConverter)
Vector. This function is used during
building of dataset for training aggregator model. This dataset is augmented with results of submodels
converted to Vector.withSubmodelOutput2VectorConverter in class StackedDatasetTrainer<Vector,Vector,O,AM extends IgniteModel<Vector,O>,L>submodelOutput2VectorConverter - Function used for conversion of submodel output to Vector.public StackedVectorDatasetTrainer<O,AM,L> withVector2SubmodelInputConverter(IgniteFunction<Vector,Vector> vector2SubmodelInputConverter)
Vector to submodel input. This function is used during
building of dataset for training aggregator model. This dataset is augmented with results of submodels
applied to Vectors in original dataset.withVector2SubmodelInputConverter in class StackedDatasetTrainer<Vector,Vector,O,AM extends IgniteModel<Vector,O>,L>vector2SubmodelInputConverter - Function used for conversion of Vector to submodel input.public StackedVectorDatasetTrainer<O,AM,L> withAggregatorInputMerger(IgniteBinaryOperator<Vector> merger)
withAggregatorInputMerger in class SimpleStackedDatasetTrainer<Vector,O,AM extends IgniteModel<Vector,O>,L>merger - Binary operator used to merge submodels outputs to one.public StackedVectorDatasetTrainer<O,AM,L> withEnvironmentBuilder(LearningEnvironmentBuilder envBuilder)
withEnvironmentBuilder in class SimpleStackedDatasetTrainer<Vector,O,AM extends IgniteModel<Vector,O>,L>envBuilder - Learning environment builder.public <L1> StackedVectorDatasetTrainer<O,AM,L1> withConvertedLabels(IgniteFunction<L1,L> new2Old)
DatasetTrainer with same training logic, but able to accept labels of given new type of labels.withConvertedLabels in class SimpleStackedDatasetTrainer<Vector,O,AM extends IgniteModel<Vector,O>,L>L1 - New labels type.new2Old - Converter of new labels to old labels.DatasetTrainer with same training logic, but able to accept labels of given new type of labels.public <M1 extends IgniteModel<Vector,Double>> StackedVectorDatasetTrainer<O,AM,L> addTrainerWithDoubleOutput(DatasetTrainer<M1,L> trainer)
Vector -> Double where this trainer is treated as Vector -> Vector, where
output Vector is constructed by wrapping double value.M1 - Type of submodel trainer model.trainer - Submodel trainer.public <M1 extends IgniteModel<Matrix,Matrix>> StackedVectorDatasetTrainer<O,AM,L> addMatrix2MatrixTrainer(DatasetTrainer<M1,L> trainer)
Matrix -> Matrix where this trainer is treated as Vector -> Vector, where
input Vector is turned into 1 x cols Matrix and output is a first row of output Matrix.M1 - Type of submodel trainer model.trainer - Submodel trainer.
GridGain In-Memory Computing Platform : ver. 8.9.26 Release Date : October 16 2025