public class GmmTrainer extends SingleLabelDatasetTrainer<GmmModel>
DatasetTrainer.EmptyDatasetExceptionenvBuilder, environment| Constructor and Description |
|---|
GmmTrainer()
Creates an instance of GmmTrainer.
|
GmmTrainer(int countOfComponents)
Creates an instance of GmmTrainer.
|
GmmTrainer(int countOfComponents,
int maxCountOfIterations)
Creates an instance of GmmTrainer.
|
| Modifier and Type | Method and Description |
|---|---|
<K,V> GmmModel |
fitWithInitializedDeployingContext(DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> extractor)
Trains model based on the specified data.
|
boolean |
isUpdateable(GmmModel mdl) |
protected <K,V> GmmModel |
updateModel(GmmModel mdl,
DatasetBuilder<K,V> datasetBuilder,
Preprocessor<K,V> extractor)
Trains new model taken previous one as a first approximation.
|
GmmTrainer |
withEps(double eps)
Sets min divergence beween iterations.
|
GmmTrainer |
withInitialCountOfComponents(int numberOfComponents)
Sets numberOfComponents.
|
GmmTrainer |
withInitialMeans(List<Vector> means)
Sets initial means.
|
GmmTrainer |
withMaxCountIterations(int maxCountOfIterations)
Sets max count of iterations
|
GmmTrainer |
withMaxCountOfClusters(int maxCountOfClusters)
Sets maximum number of clusters in GMM.
|
GmmTrainer |
withMaxCountOfInitTries(int maxCountOfInitTries)
Sets MaxCountOfInitTries parameter.
|
GmmTrainer |
withMaxLikelihoodDivergence(double maxLikelihoodDivergence)
Sets maximum divergence between maximum of likelihood of vector in dataset and other for anomalies
identification.
|
GmmTrainer |
withMinClusterProbability(double minClusterProbability)
Sets minimum requred probability for cluster.
|
GmmTrainer |
withMinElementsForNewCluster(int minElementsForNewCluster)
Sets minimum required anomalies in terms of maxLikelihoodDivergence for creating new cluster.
|
fit, fit, fit, fit, fit, fit, getLastTrainedModelOrThrowEmptyDatasetException, identityTrainer, learningEnvironment, update, update, update, update, update, withConvertedLabels, withEnvironmentBuilderpublic GmmTrainer()
public GmmTrainer(int countOfComponents,
int maxCountOfIterations)
countOfComponents - Count of components.maxCountOfIterations - Max count of iterations.public GmmTrainer(int countOfComponents)
countOfComponents - Count of components.public <K,V> GmmModel fitWithInitializedDeployingContext(DatasetBuilder<K,V> datasetBuilder, Preprocessor<K,V> extractor)
fitWithInitializedDeployingContext in class DatasetTrainer<GmmModel,Double>K - Type of a key in upstream data.V - Type of a value in upstream data.datasetBuilder - Dataset builder.extractor - Extractor of UpstreamEntry into LabeledVector.public GmmTrainer withInitialCountOfComponents(int numberOfComponents)
numberOfComponents - Number of components.public GmmTrainer withInitialMeans(List<Vector> means)
means - Initial means for clusters.public GmmTrainer withMaxCountIterations(int maxCountOfIterations)
maxCountOfIterations - Max count of iterations.public GmmTrainer withEps(double eps)
eps - Eps.public GmmTrainer withMaxCountOfInitTries(int maxCountOfInitTries)
maxCountOfInitTries - Max count of init tries.public GmmTrainer withMaxCountOfClusters(int maxCountOfClusters)
maxCountOfClusters - Max count of clusters.public GmmTrainer withMaxLikelihoodDivergence(double maxLikelihoodDivergence)
maxLikelihoodDivergence - Max likelihood divergence.public GmmTrainer withMinElementsForNewCluster(int minElementsForNewCluster)
minElementsForNewCluster - Min elements for new cluster.public GmmTrainer withMinClusterProbability(double minClusterProbability)
minClusterProbability - Min cluster probability.public boolean isUpdateable(GmmModel mdl)
isUpdateable in class DatasetTrainer<GmmModel,Double>mdl - Model.protected <K,V> GmmModel updateModel(GmmModel mdl, DatasetBuilder<K,V> datasetBuilder, Preprocessor<K,V> extractor)
updateModel in class DatasetTrainer<GmmModel,Double>K - Type of a key in upstream data.V - Type of a value in upstream data.mdl - Learned model.datasetBuilder - Dataset builder.extractor - Extractor of UpstreamEntry into LabeledVector.
GridGain In-Memory Computing Platform : ver. 8.9.26 Release Date : October 16 2025