public class SVMLinearBinaryClassificationTrainer extends SingleLabelDatasetTrainer<SVMLinearBinaryClassificationModel>
This trainer takes input as Labeled Dataset with 0 and 1 labels for two classes and makes binary classification.
The paper about this algorithm could be found here https://arxiv.org/abs/1409.1458.DatasetTrainer.EmptyDatasetExceptionenvironment| Constructor and Description |
|---|
SVMLinearBinaryClassificationTrainer() |
| Modifier and Type | Method and Description |
|---|---|
protected boolean |
checkState(SVMLinearBinaryClassificationModel mdl) |
<K,V> SVMLinearBinaryClassificationModel |
fit(DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Trains model based on the specified data.
|
int |
getAmountOfIterations()
Get the amount of outer iterations of SCDA algorithm.
|
int |
getAmountOfLocIterations()
Get the amount of local iterations of SCDA algorithm.
|
double |
getLambda()
Get the regularization lambda.
|
long |
getSeed()
Get the seed number.
|
protected <K,V> SVMLinearBinaryClassificationModel |
updateModel(SVMLinearBinaryClassificationModel mdl,
DatasetBuilder<K,V> datasetBuilder,
IgniteBiFunction<K,V,Vector> featureExtractor,
IgniteBiFunction<K,V,Double> lbExtractor)
Gets state of model in arguments, update in according to new data and return new model.
|
SVMLinearBinaryClassificationTrainer |
withAmountOfIterations(int amountOfIterations)
Set up the amount of outer iterations of SCDA algorithm.
|
SVMLinearBinaryClassificationTrainer |
withAmountOfLocIterations(int amountOfLocIterations)
Set up the amount of local iterations of SCDA algorithm.
|
SVMLinearBinaryClassificationTrainer |
withLambda(double lambda)
Set up the regularization parameter.
|
SVMLinearBinaryClassificationTrainer |
withSeed(long seed)
Set up the seed.
|
fit, fit, fit, fit, getLastTrainedModelOrThrowEmptyDatasetException, setEnvironment, update, update, update, update, updatepublic SVMLinearBinaryClassificationTrainer()
public <K,V> SVMLinearBinaryClassificationModel fit(DatasetBuilder<K,V> datasetBuilder, IgniteBiFunction<K,V,Vector> featureExtractor, IgniteBiFunction<K,V,Double> lbExtractor)
fit in class DatasetTrainer<SVMLinearBinaryClassificationModel,Double>K - Type of a key in upstream data.V - Type of a value in upstream data.datasetBuilder - Dataset builder.featureExtractor - Feature extractor.lbExtractor - Label extractor.protected <K,V> SVMLinearBinaryClassificationModel updateModel(SVMLinearBinaryClassificationModel mdl, DatasetBuilder<K,V> datasetBuilder, IgniteBiFunction<K,V,Vector> featureExtractor, IgniteBiFunction<K,V,Double> lbExtractor)
updateModel in class DatasetTrainer<SVMLinearBinaryClassificationModel,Double>K - Type of a key in upstream data.V - Type of a value in upstream data.mdl - Learned model.datasetBuilder - Dataset builder.featureExtractor - Feature extractor.lbExtractor - Label extractor.protected boolean checkState(SVMLinearBinaryClassificationModel mdl)
checkState in class DatasetTrainer<SVMLinearBinaryClassificationModel,Double>mdl - Model.public SVMLinearBinaryClassificationTrainer withLambda(double lambda)
lambda - The regularization parameter. Should be more than 0.0.public double getLambda()
public int getAmountOfIterations()
public SVMLinearBinaryClassificationTrainer withAmountOfIterations(int amountOfIterations)
amountOfIterations - The parameter value.public int getAmountOfLocIterations()
public SVMLinearBinaryClassificationTrainer withAmountOfLocIterations(int amountOfLocIterations)
amountOfLocIterations - The parameter value.public long getSeed()
public SVMLinearBinaryClassificationTrainer withSeed(long seed)
seed - The parameter value.
Follow @ApacheIgnite
Ignite Database and Caching Platform : ver. 2.7.2 Release Date : February 6 2019