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Agenda
• Brief architecture overview of Apache Ignite 
• Which APIs can I use with Apache Ignite?  
• How can I get faster data manipulation using the compute grid? 
• How can my transactions be ACID compliant and also highly available?  

• How many servers / nodes are needed for my use case? 
• Which persistent data stores work with Ignite?  

• What are the architectural best practices for both large and small 
deployments? 

• What is the best choice for my deployment: Apache Ignite, GridGain 
Professional or GridGain Enterprise Edition?   

• Q & A
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Which APIs can I use with 
Apache Ignite?
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How can I get faster data 
manipulation using the compute 

grid?
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Client / Server Pattern

• Moving data around is costly 
• High network utilisation 
• Higher latency 
• More error prone Data  
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4. Return to client
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Map/Reduce & Affinity Runs

• Sending the processing to the 
data is faster and more efficient: 
• Entry processors 
• Compute tasks 
• Map / Reduce 
• Affinity Runs 1. Initial Request 

2. Co-locating processing with data 
3. Return partial result 
4. Reduce & return to client
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Client-Server vs. Map/Reduce
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How can my transactions be ACID 
compliant and also highly 

available?



© 2016 GridGain Systems, Inc.

2 Phase Commit



© 2016 GridGain Systems, Inc.

How many servers / nodes are 
needed for my use case?
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• Calculate primary data size: multiply the size 
of one entry in bytes by the total number of 
entries 

• If you have backups, multiply by their 
number 

• Indexes also require memory. Basic use 
cases will add a 30% increase 

• Add around 20MB per cache 
• Add around 200-300MB per node for 

internal memory and reasonable amount of 
memory for JVM and GC to operate 
efficiently

Memory Capacity Planning
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• I have 300GB of data in DB will this be the same in Ignite? 
No, data size on disk is not a direct 1-to-1 mapping in memory. As a 
very rough estimate it can be about 2.5/3 times size on disk excluding 
indexes and any other overhead. To get a more accurate estimation 
you need to figure out the average object size by importing a record 
into Ignite and multiplying by the number of objects expected.

Memory Capacity Planning
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• Understand the cost of a given 
operation that your application will 
be performing and multiply this by 
the number of operations expected 
at various times 

• A good starting point for this would 
be the Ignite benchmarks which 
detail the results of standard 
operations and give a rough 
estimate of the capacity required to 
deliver such performance

Processing Capacity Planning

More results here

With 32 cores over 4 large AWS instances 
the following benchmarks were recorded:

http://www.gridgain.com/resources/benchmarks/ignite-vs-hazelcast-benchmarks
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Which persistent data stores 
work with Ignite?
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What are architectural best 
practices for both large and small 

deployments?
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• Resilience - Build an in-memory 
resilient service layer between 
your client application and the 
grid 

• Only expose application APIs 
and not direct grid APIs 

• Service Chaining - Call services 
internally via compute tasks to 
create service chains

In-Memory Service Grid
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• Singletons on the Cluster 

– Cluster Singleton 

– Node Singleton 

– Key Singleton 

• Guaranteed Availability 

– Auto Redeployment in Case 
of Failures

In-Memory Service Grid
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Logical Cluster Groups
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What is the best choice for my 
deployment:  Apache Ignite, 

GridGain Professional or GridGain 
Enterprise Edition?
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Thank You!

www.gridgain.com

@gridgain 

 #gridgain

Thank you for joining us. Follow the conversation.
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