
© 2015 The Apache Software Foundation. Apache, Apache Ignite, the Apache feather and the Apache Ignite logo are trademarks of The Apache Software Foundation.

Top 7 Apache Ignite FAQs
From Around the World!

Christos Erotocritou
Managing Solutions Architect - EMEA

Rachel Pedreschi
Managing Solutions Architect -
Americas

Agenda
• Brief architecture overview of Apache Ignite
• Which APIs can I use with Apache Ignite?
• How can I get faster data manipulation using the compute grid?
• How can my transactions be ACID compliant and also highly available?

• How many servers / nodes are needed for my use case?
• Which persistent data stores work with Ignite?

• What are the architectural best practices for both large and small
deployments?

• What is the best choice for my deployment: Apache Ignite, GridGain
Professional or GridGain Enterprise Edition?

• Q & A

© 2016 GridGain Systems, Inc.

© 2016 GridGain Systems, Inc.

Which APIs can I use with
Apache Ignite?

© 2016 GridGain Systems, Inc.

© 2016 GridGain Systems, Inc.

How can I get faster data
manipulation using the compute

grid?

© 2016 GridGain Systems, Inc.

Client / Server Pattern

• Moving data around is costly
• High network utilisation
• Higher latency
• More error prone Data

Node 2

Processing
Node 1

1

3

4

Data
Node 1

Data 1

Data 2

2

2

1. Initial Request
2. Fetch data from remote nodes
3. Process entire data-set
4. Return to client

© 2016 GridGain Systems, Inc.

Map/Reduce & Affinity Runs

• Sending the processing to the
data is faster and more efficient:
• Entry processors
• Compute tasks
• Map / Reduce
• Affinity Runs 1. Initial Request

2. Co-locating processing with data
3. Return partial result
4. Reduce & return to client

1
2

4

3 Data 1

Job 1

2

3
Data 2

Job 2

Processing
Node 1

Processing
Node 2

Client
Node

© 2016 GridGain Systems, Inc.

Client-Server vs. Map/Reduce

1
2

4

3 Data 1

Job 1

2

3
Data 2

Job 2

Processing
Node 1

Processing
Node 2

Client
Node

Data
Node 2

Processing
Node 1

1

3

4

Data
Node 1

Data 1

Data 2

2

2

1. Initial Request
2. Fetch data from remote nodes
3. Process entire data-set
4. Return to client

1. Initial Request
2. Co-locating processing with data
3. Return partial result
4. Reduce & return to client

© 2016 GridGain Systems, Inc.

How can my transactions be ACID
compliant and also highly

available?

© 2016 GridGain Systems, Inc.

2 Phase Commit

© 2016 GridGain Systems, Inc.

How many servers / nodes are
needed for my use case?

© 2016 GridGain Systems, Inc.

• Calculate primary data size: multiply the size
of one entry in bytes by the total number of
entries

• If you have backups, multiply by their
number

• Indexes also require memory. Basic use
cases will add a 30% increase

• Add around 20MB per cache
• Add around 200-300MB per node for

internal memory and reasonable amount of
memory for JVM and GC to operate
efficiently

Memory Capacity Planning

© 2016 GridGain Systems, Inc.

• I have 300GB of data in DB will this be the same in Ignite?
No, data size on disk is not a direct 1-to-1 mapping in memory. As a
very rough estimate it can be about 2.5/3 times size on disk excluding
indexes and any other overhead. To get a more accurate estimation
you need to figure out the average object size by importing a record
into Ignite and multiplying by the number of objects expected.

Memory Capacity Planning

© 2016 GridGain Systems, Inc.

• Understand the cost of a given
operation that your application will
be performing and multiply this by
the number of operations expected
at various times

• A good starting point for this would
be the Ignite benchmarks which
detail the results of standard
operations and give a rough
estimate of the capacity required to
deliver such performance

Processing Capacity Planning

More results here

With 32 cores over 4 large AWS instances
the following benchmarks were recorded:

http://www.gridgain.com/resources/benchmarks/ignite-vs-hazelcast-benchmarks

© 2016 GridGain Systems, Inc.

Which persistent data stores
work with Ignite?

© 2016 GridGain Systems, Inc.

© 2016 GridGain Systems, Inc.

What are architectural best
practices for both large and small

deployments?

© 2016 GridGain Systems, Inc.

• Resilience - Build an in-memory
resilient service layer between
your client application and the
grid

• Only expose application APIs
and not direct grid APIs

• Service Chaining - Call services
internally via compute tasks to
create service chains

In-Memory Service Grid

© 2016 GridGain Systems, Inc.

• Singletons on the Cluster

– Cluster Singleton

– Node Singleton

– Key Singleton

• Guaranteed Availability

– Auto Redeployment in Case
of Failures

In-Memory Service Grid

© 2016 GridGain Systems, Inc.

Logical Cluster Groups

Processing
Node 2

Processing
Node 1

Processing
Node 3

Processing
Node 4

Data
Node 2

Data
Node 1

Data
Node 4

Data
Node 3

Service
Node 4

Service
Node 1

Service
Node 3

Service
Node 2

Compute
Task

Compute Task
(Affinity Run)

SQL
Query

K/V
Remote Call

K/V
Local Call

Ignite Cluster

Services Cluster Group

Data Cluster Group Processing Cluster Group

© 2016 GridGain Systems, Inc.

What is the best choice for my
deployment: Apache Ignite,

GridGain Professional or GridGain
Enterprise Edition?

© 2016 GridGain Systems, Inc.

Data Grid Compute Grid

Streaming
Services

and
Messaging

GaaSOLAP
Caching

OLTP

Caching

Security Monitoring and
ManagementHigh Availability

Apache Ignite / GridGain Professional

GridGain Enterprise

© 2016 GridGain Systems, Inc.

Thank You!

www.gridgain.com

@gridgain

 #gridgain

Thank you for joining us. Follow the conversation.

Authors: Christos Erotocritou and Rachel Pedreschi

http://www.gridgain.com

