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Ignite transactions subsystem
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cacheConfiguration.setCacheAtomicityMode(TRANSACTIONAL);

• Cross-partition

• Cross-cache

• Multi-record

• Multi-node

• Full ACID guarantees

• Failover-safe (still ACID if some of participant nodes fail)
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Entry point to transactions API
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ignite.transactions();

Main facade for transactions API
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Transaction start
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transactions.txStart(concurrency, isolation, timeout, txSize);

– concurrency = PESSIMISTIC, OPTIMISTIC

– isolation = READ_COMMITTED, REPEATABLE_READ, SERIALIZABLE

– timeout = transaction to be rolled back after the specified period

– txSize = expected number of affected entries

• The transaction is started and is attached to the current thread.

• All cache operations that are executed in the current thread are within the 

transaction.
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Transaction start
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transactions.txStart(concurrency, isolation, timeout, txSize);
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Current transaction retrieval
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transactions.tx();

Returns the transaction instance that is attached to the current thread
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Transaction commit
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tx.commit();

• The transaction commit is performed.

• Data is not changed, unless commit is called.
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Transaction close
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tx.close();

• Transaction detached from the current thread

• Transaction rolled back, if it wasn’t committed
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Transaction rollback
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tx.setRollbackOnly();

• Makes rollback the only possible outcome of transaction

• Affects state, if called before commit();

tx.rollback();

Performs greedy and synchronous transaction rollback
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Implicit transactions
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tx.implicit();

• Returns true, if the transaction was started implicitly—without txStart();

• cache.putAll(map);

– Starts implicit transactions
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Suspending and resuming transactions
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tx.suspend();

Detaches the transaction from the current thread

tx.resume();

Attaches the suspended transaction to the current thread
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Transaction states
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tx.state();

Transaction state Comment

ACTIVE transactional activity in progress

SUSPENDED transaction activity paused, but can be resumed from any thread

MARKED_ROLLBACK transactional activity in progress, but commit isn’t possible

PREPARING commit preparing

PREPARED commit prepared

COMMITTING commit in progress, data storage being updated

COMMITTED commit finished

ROLLING_BACK rollback in progress

ROLLED_BACK rollback finished
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Transaction state flow
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ACTIVE PREPARING

PREPARED

COMMITTING

COMMITTED

MARKED_ROLLBACK

ROLLING_BACK

ROLLED_BACK

SUSPENDED
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Exceptions to check
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• TransactionRollbackException—on automatic rollback

• TransactionTimeoutException—on timeout

• TransactionDeadlockException—on key-level deadlock

• TransactionOptimisticException—on optimistic lock failure

• ClusterTopologyException—on primary node fail
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OPTIMISTIC, READ_COMMITTED
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Use case 1: atomic batch update
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PESSIMISTIC, READ_COMMITTED
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Use case 2: exclusive update
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PESSIMISTIC, REPEATABLE_READ
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Use case 3: safe payment processing
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Snapshot isolation
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Snapshot isolation is a guarantee that all reads made in a transaction will 

see a consistent snapshot of the database.

• Unavailable in Ignite transactions

• Supported in MVCC mode (since 2.7, beta)

• Capable of being emulated
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OPTIMISTIC, SERIALIZABLE

23

Use case 4: emulation of snapshot isolation



2020 © GridGain Systems

Transactional caches
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OPTIMISTIC /

READ_COMMITTED*

PESSIMISTIC / 

READ_COMMITTED

PESSIMISTIC / 

REPEATABLE_READ

OPTIMISTIC / 

SERIALIZABLE

ACID guarantees ✔ ✔ ✔ ✔

Locks on write

(exclusive update possible)

x ✔ ✔ ✔ (optimistic lock)

Locks on read

(payment processing possible)

x x ✔ ✔ (optimistic lock)

Forced rollback on concurrent update is possible x x x ✔ (if optimistic 

locking fails)

Automatic resolution of deadlocks that are 

caused by the application

x x x ✔

* Batch putAll also has OPTIMISTIC / READ_COMMITTED guarantees
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Transaction flow and commit protocol
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Transaction flow and commit protocol: reference
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• Before commit, updates are enlisted on only the initiator node.

• Locks are acquired on the primary node.

• On first primary access, the transaction is mapped to a topology version.

• On commit, a two-phase commit procedure is started.

• In the prepare phase, locks for all data are acquired on primaries and backups.

• In the commit phase, data is changed in storage, and locks are released.
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Transactions interaction with PME
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• Reference: Partition Map Exchange under the hood

– https://cwiki.apache.org/confluence/display/IGNITE/%28Partition+Map%29

+Exchange+-+under+the+hood

• Behavior: PME inflicts stop-the-world pause on all user loads.

Partition Map Exchange (PME) is a distributed, partition-state 

consolidation protocol that is triggered on every topology change.

https://cwiki.apache.org/confluence/display/IGNITE/%28Partition+Map%29+Exchange+-+under+the+hood
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Transaction interaction with PME
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• PME is triggered every time topology changes.

• PME to topVer=X can’t finish if there are TXs mapped to Y < X.

• TXs can’t map to topVer=X if PME isn’t finished.

Caution: PME while long TX is in progress freezes all successive TXs

PME is a distributed, partition-state consolidation protocol that is 

triggered on every topology change.
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TX recovery
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TX recovery is a safe transaction finish protocol that is used if a 

coordinator node or a primary node fails.
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TX recovery: reference
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• When a participant node crashes, distributed TX recovery starts.

• All participant nodes exchange TX state.

• If all nodes are PREPARED and above, TX is committed.

• If a node is below PREPARED, TX is rolled back.

• Invariants:

– If TX has changed data somewhere, TX is PREPARED or above on all nodes.

– If TX is below PREPARED somewhere, TX hasn’t changed data anywhere.
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Pitfall: key contention
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• Key locks are exclusive.

• Concurrent transactions that access the same key queue on the key.

• TX latency increases, all of the load freezes in case of PME.

action1();

action2();

happens

before
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Pitfall: heavy activities inside the transaction
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• Dependent load may freeze for the duration of the long call.

• In the case of PME, all of the load freezes.
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Pitfall: key-level deadlock
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Deadlock risk on k1 and k2 key locks
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Avoiding pitfalls
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Avoiding pitfalls: timeouts
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• txTimeout

Required for production use

• txConfiguration.setDefaultTxTimeout(timeout);

Applied for transactions that do not have an explicit timeout specification

• txConfiguration.setTxTimeoutOnPartitionMapExchange();

Used to specify a shorter timeout, in case PME is in progress
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Avoiding pitfalls: deadlocks
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• txConfiguration.setDefaultTxTimeout(timeout);

Deadlock detection is triggered only on timeout

• Preserve global order of key access

• Use OPTIMISTIC, SERIALIZABLE if other options are not possible
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Troubleshooting: reading logs

81



2020 © GridGain Systems

Reading logs: long-running transactions
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Logs report on long-running transactions.
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Reading logs: TX deadlock
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Logs provide detailed information about TX deadlock.
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Reading logs: heavy activities inside the 
transaction
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Logs provide stack trace of the TX owner thread on the initiator node.
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Reading logs: PME is blocked by transaction
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Logs report if PME can’t finish due to an ongoing transaction.
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TX tracing: coming soon
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• Reports activity on all nodes as OpenCensus spans to the tracing system

• Allows tracing of the complete transaction flow

• Enables tracing of transactions selectively by label
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TX tracing: reference
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• IEP-48: Tracing 

– https://cwiki.apache.org/confluence/display/IGNITE/IEP-48%3A+Tracing

• Tracing documentation on GridGain dev portal

– https://www.gridgain.com/docs/control-center/latest/tracing

https://cwiki.apache.org/confluence/display/IGNITE/IEP-48%3A+Tracing
https://www.gridgain.com/docs/control-center/latest/tracing
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Thanks for your attention!

Questions?

e-mail: irakov@gridgain.com

public list for discussions: user@ignite.apache.org


