. . A
GridGain/«m

Moving Apache Ignite into ProdUctlen et

Best Practices for Dlstrlbuted Transactlo'ns

lvan Rakov
June 10, 2020

2020 © GridGain Systems

June 10, 2020

lvan Rakov

e |eader of the data-consistency
development team, GridGain Systems

e Apache® Ignite™ Committer

P
. . 2”8
2020 © GridGain Systems GridGain /==

Ignite transactions subsystem

cacheConfiguration.setCacheAtomicityMode(TRANSACTIONAL);

Cross-partition

Cross-cache

Multi-record

Multi-node

Full ACID guarantees

Failover-safe (still ACID if some of participant nodes fail)

P
. . 2”8
3 2020 © GridGain Systems GridGain /==

APl overview
Isolation and concurrency
What happens under the hood

e Transaction flow and commit protocol
e TXrecovery

 Tips for moving safely into production
e Recommendations to avoid delays
e Troubleshooting

P
. . 2”8
4 2020 © GridGain Systems GridGain /==

 API overview

P
. . 2”8

7
5 2020 © GridGain Systems GridGain /==

Entry point to transactions API

Ignite.transactions();

Main facade for transactions API

P
. . 2”8
6 2020 © GridGain Systems GridGain /==

Transaction start

transactions.txStart(concurrency, isolation, timeout, txSize);
- concurrency = PESSIMISTIC, OPTIMISTIC

- isolation = READ COMMITTED, REPEATABLE_READ, SERIALIZABLE
- timeout = transaction to be rolled back after the specified period
- txSize = expected number of affected entries

The transaction is started and is attached to the current thread.

All cache operations that are executed in the current thread are within the
transaction.

P
. . 2”8
7 2020 © GridGain Systems GridGain /==

Transaction start

transactions.txStart(concurrency, isolation, timeout, txSize);

try (Transaction tx = transactions.txStart()) {
cachel.put(k, v);
cache2.remove(k);
// ~ two operations within the same transaction

}

P
. . 2”8
8 2020 © GridGain Systems GridGain /==

Current transaction retrieval

transactions.tx();

Returns the transaction instance that is attached to the current thread

try (Transaction tx = transactions.txStart()) {
foo();

}

public void foo() {
Transaction tx = transactions.tx();
tx.setRollbackOnly();

}

P
. . 2”8
9 2020 © GridGain Systems GridGain /==

Transaction commit

tx.commit();

The transaction commit is performed.
Data Is not changed, unless commit is called.

try (Transaction tx = transactions.txStart()) {
cache.put(kl, vl);
cache.put(k2, v2);

tx.commit();

}

P
. . 2”8
10 2020 © GridGain Systems GridGain /==

Transaction close

tx.close();

Transaction detached from the current thread
Transaction rolled back, if it wasn’t committed

try (Transaction tx = transactions.txStart()) {
cache.put(kl, vl);
cache.put(k2, v2);

}

// Transaction 1s AutoCloseable:
// close 1s called, transaction gets rolled back

P
. . 2”8
11 2020 © GridGain Systems GridGain /==

Transaction rollback

tx.setRollbackOnly();

Makes rollback the only possible outcome of transaction
- Affects state, if called before commit();

tx.rollback();

Performs greedy and synchronous transaction rollback

P
. . 2”8
12 2020 © GridGain Systems GridGain /==

Implicit transactions

tx.implicit();

Returns true, if the transaction was started implicitly—without txStart();

cache.putAll(map);
- Starts implicit transactions

P
. . 2”8
13 2020 © GridGain Systems GridGain /==

Suspending and resuming transactions

tx.suspend();

Detaches the transaction from the current thread

tx.resume();

Attaches the suspended transaction to the current thread

Thread 1:
tx = transactions.txStart();
tx.suspend();

" Thread 2:
tx.resume();
tx.commit();

14 2020 © GridGain Systems

. . /:
GridGain/==

Transaction states

tx.state();
ACTIVE transactional activity in progress
SUSPENDED transaction activity paused, but can be resumed from any thread
MARKED ROLLBACK transactional activity in progress, but commit isn’t possible
PREPARING commit preparing
PREPARED commit prepared
COMMITTING commit in progress, data storage being updated
COMMITTED commit finished
ROLLING_ BACK rollback in progress
ROLLED BACK rollback finished

P
. . 2”8
15 2020 © GridGain Systems GridGain /==

Transaction state flow

ACTIVE

MARKED_ROLLBACK

16 2020 © GridGain Systems

PREPARING

SUSPENDED

PREPARED

COMMITTING

/

ROLLING_BACK

N

COMMITTED

ROLLED_BACK

. . /:
GridGain/==

Exceptions to check

TransactionRollbackException—on automatic rollback
TransactionTimeoutException—on timeout
TransactionDeadlockException—on key-level deadlock
TransactionOptimisticException—on optimistic lock failure
ClusterTopologyException—on primary node fail

P
. . 2”8
17 2020 © GridGain Systems GridGain /==

 |solation and concurrency

P
. . 2”8
18 2020 © GridGain Systems GridGain /==

OPTIMISTIC, READ_COMMITTED

Use case 1. atomic batch update

try (Transaction tx = txs.txStart(OPTIMISTIC, READ_COMMITTED)) {
txCache.putAll(batch);
tx.commit();

}

// equal actions

txCache.putAll(batch);

P
. . 2”8
19 2020 © GridGain Systems GridGain /==

PESSIMISTIC, READ _COMMITTED

Use case 2: exclusive update

try (Transaction tx = txs.txStart(PESSIMISTIC, READ_COMMITTED)) {
lastUserExecutionCache.put(userl, UUID.randomUutid());
// all similar operations with userl are locked

transfersCache.put(newlTransferId, transfer);
auditCache.put(newAuditId, audit);

tx.commit();

P
. . 2”8
20 2020 © GridGain Systems GridGain /==

PESSIMISTIC, REPEATABLE _READ

Use case 3: safe payment processing

try (Transaction tx = txs.txStart(PESSIMISTIC, REPEATABLE_READ)) {
int balancel = cache.get(accl);
int balance?2 = cache.get(acc2?2);

cache.put(accl, balancel - 100);
cache.put(acc2, balance2 + 100);

tx.commit();

}

P
. . 2”8
21 2020 © GridGain Systems GridGain /==

Snapshot isolation

Snapshot isolation is a guarantee that all reads made in a transaction will
see a consistent snapshot of the database.

Unavailable in Ignite transactions
Supported in MVCC mode (since 2.7, beta)
Capable of being emulated

P
. . 2”8
22 2020 © GridGain Systems GridGain /==

OPTIMISTIC, SERIALIZABLE

Use case 4: emulation of snapshot isolation

try (Transaction tx = txs.txStart(OPTIMISTIC, SERIALIZABLE)) {
Map<UserId, User> map = cache.getAll(usersFromCity);
// Optimistic shared locks are acquired for all users

boolean noAmbassador = !map.values().stream().anyMatch(User::i1sAmbassador);

if (noAmbassador) {
User u = map.get(newAmbassadorlId);
u.setStatus(CITY_AMBASSADOR);
cache.put(userld, u);

}

tx.commit();
// Guarantees that only one user from city can be promoted to ambassador

}

P
. . 2”8
23 2020 © GridGain Systems GridGain /==

Transactional caches

OPTIMISTIC / PESSIMISTIC / PESSIMISTIC / OPTIMISTIC /
READ_COMMITTED* | READ_COMMITTED REPEATABLE_READ | SERIALIZABLE

ACID guarantees v v v v

Locks on write X v v + (optimistic lock)

(exclusive update possible)

Locks on read X X v + (optimistic lock)

(payment processing possible)

Forced rollback on concurrent update is possible X X X + (if optimistic
locking fails)

Automatic resolution of deadlocks that are X X X v

caused by the application

* Batch putAll also has OPTIMISTIC / READ_COMMITTED guarantees

P
. . 2”8
24 2020 © GridGain Systems GridGain /==

What happens under the hood
e Transaction flow and commit protocol
e TXrecovery

P
. . 2”8
25 2020 © GridGain Systems GridGain /==

Transaction flow and commit protocol

P
. . 2”8
26 2020 © GridGain Systems GridGain /==

27

try (Transaction tx = txStart()) {

CLIENT

TX state ? 4>
Enlisted entries W
Locked keys
Written WAL
& NODE
primary
w TX state

DISK

& NoDE
backup

Enlisted entries

Locked keys

Written WAL

TX state ACTIVE
Enlisted entries
Locked keys
Written WAL
C) TXstate

DISK

& NODE
primary

Enlisted entries

Locked keys

Written WAL

TX state

Enlisted entries

Locked keys

Written WAL

DISK

& NoDE
backup

28

try (Transaction tx = txStart()) {
cache.put(ki, v1); =

7N

CLIENT

TX state ? 4>
Enlisted entries W
Locked keys
Written WAL
& NODE
primary
W TX state

DISK

& NoDE
backup

Enlisted entries

Locked keys

Written WAL

TX state ACTIVE
Enlisted entries (k1, v1)
Locked keys
Written WAL

C) TXstate

DISK

& NoDE
primary

Enlisted entries

Locked keys

Written WAL

TX state

Enlisted entries

Locked keys

Written WAL

DISK

& NopE
backup

29

try (Transaction tx = txStart()) {
cache.put(ki, v1); =

71

CLIENT

lock request

TX state ACTIVE 4>
Enlisted entries W
Locked keys
Written WAL
& NODE
primary
w TX state ?

DISK

& NoDE
backup

Enlisted entries

Locked keys

Written WAL

TX state ACTIVE
Enlisted entries (k1, v1)
Locked keys
Written WAL

C) TXstate

DISK

& NoDE
primary

Enlisted entries

Locked keys

Written WAL

TX state

Enlisted entries

Locked keys

Written WAL

DISK

& NoDE
backup

30

try (Transaction tx = txStart()) {
cache.put(ki, v1); =

71

CLIENT

TX state ACTIVE 4>
Enlisted entries W
Locked keys k1
Written WAL
& NODE
primary
w TX state

DISK

& NoDE
backup

Enlisted entries

Locked keys

Written WAL

TX state ACTIVE
Enlisted entries (k1, v1)
Locked keys
Written WAL

C) TXstate

DISK

& NoDE
primary

Enlisted entries

Locked keys

Written WAL

TX state

Enlisted entries

Locked keys

Written WAL

DISK

& NoDE
backup

31

try (Transaction tx = txStart()) {
cache.put(ki, v1); =

71

CLIENT

lock response

TX state ACTIVE 4>
Enlisted entries W
Locked keys k1
Written WAL
& NODE
primary
w TX state

DISK

& NoDE
backup

Enlisted entries

Locked keys

Written WAL

TX state ACTIVE
Enlisted entries (k1, v1)
Locked keys
Written WAL

C) TXstate

DISK

& NoDE
primary

Enlisted entries

Locked keys

Written WAL

TX state

Enlisted entries

Locked keys

Written WAL

DISK

& NoDE
backup

32

try (Transaction tx
cache.put(kl, v1); ¢/

= txStart()) {

CLIENT

TX state

ACTIVE

Enlisted entries (k1, v1)

Locked keys

Written WAL

TX state ACTIVE TX state
Enlisted entries Enlisted entries
Locked keys k1 DISK Locked keys
Written WAL Written WAL
& NODE & NoDE
primary primary
w TX state TX state ?

DISK

& NoDE
backup

Enlisted entries

Locked keys

Enlisted entries

Written WAL

Locked keys

Written WAL

DISK

& NoDE
backup

33

try (Transaction tx

= txStart()) {

cache.put(kl, v1); ¢/

cache.put(k2, v2); 7‘;:'
I

TX state

ACTIVE

Enlisted entries

(k1, v1), (k2, v2)

CLIENT

Locked keys

Written WAL

TX state ACTIVE TX state
Enlisted entries Enlisted entries
Locked keys k1 DISK Locked keys
Written WAL Written WAL
& NODE & NoDE
primary primary
w TX state TX state ?

DISK

& NoDE
backup

Enlisted entries

Locked keys

Enlisted entries

Written WAL

Locked keys

Written WAL

DISK

& NoDE
backup

34

try (Transaction tx

= txStart()) {

cache.put(kl, v1); ¢/

cache.put(k2, v2); 7‘;:'
I

TX state

ACTIVE

Enlisted entries

(k1, v1), (k2, v2)

CLIENT

lock request

Locked keys

Written WAL

ACTIVE

TX state ACTIVE TX state
Enlisted entries Enlisted entries
Locked keys k1 DISK Locked keys
Written WAL Written WAL
& NODE & NoDE
primary primary
w TX state TX state ?

DISK

& NoDE
backup

Enlisted entries

Locked keys

Written WAL

Enlisted entries

Locked keys

Written WAL

DISK

& NoDE
backup

35

try (Transaction tx

= txStart()) {

cache.put(kl, v1); ¢/

cache.put(k2, v2); 7‘;:'
I

TX state

ACTIVE

Enlisted entries

(k1, v1), (k2, v2)

TX state ACTIVE TX state ACTIVE
Enlisted entries Enlisted entries
Locked keys k1 DISK Locked keys k2
Written WAL Written WAL
& NODE & NoDE
primary primary
w TX state TX state ?

DISK

& NoDE
backup

CLIENT

Locked keys

Written WAL

Enlisted entries

Locked keys

Enlisted entries

Written WAL

Locked keys

Written WAL

DISK

& NoDE
backup

36

try (Transaction tx

= txStart()) {

cache.put(kl, v1); ¢/

cache.put(k2, v2); 7‘;:'
I

TX state

ACTIVE

Enlisted entries

(k1, v1), (k2, v2)

TX state ACTIVE TX state ACTIVE
Enlisted entries Enlisted entries
Locked keys k1 DISK Locked keys k2
Written WAL Written WAL
& NODE & NoDE
primary primary
w TX state TX state ?

DISK

& NoDE
backup

CLIENT

lock response

Locked keys

Written WAL

Enlisted entries

Locked keys

Enlisted entries

Written WAL

Locked keys

Written WAL

DISK

& NoDE
backup

37

try (Transaction tx
cache.put(kl, v1); ¢/

cache.put(k2, v2); V

= txStart()) {

TX state ACTIVE TX state ACTIVE
Enlisted entries Enlisted entries
Locked keys k1 DISK Locked keys k2
Written WAL Written WAL
& NODE & NoDE
primary primary
w TX state TX state ?

DISK

& NODE
backup

CLIENT

TX state

ACTIVE

Enlisted entries

(k1, v1), (k2, v2)

Locked keys

Written WAL

Enlisted entries

Locked keys

Enlisted entries

Written WAL

Locked keys

Written WAL

DISK

& NODE
backup

38

try (Transaction tx = txStart()) {
cache.put(kl, v1); ¢/

cache.put(k2, v2); V

tx.commit(); -

’fl

1

CLIENT

}
TX state ACTIVE <>
Enlisted entries w
Locked keys k1
Written WAL
& NODE
primary
w TX state

DISK

& NODE
backup

Enlisted entries

Locked keys

Written WAL

TX state

PREPARING

Enlisted entries

(k1, v1), (k2, v2)

Locked keys

Written WAL

C) TXstate ACTIVE
w Enlisted entries
DISK Locked keys k2
Written WAL
& NODE
primary >
TX state ?

Enlisted entries

Locked keys

Written WAL

DISK

& NODE
backup

39

try (Transaction tx = txStart()) {
cache.put(kl, v1); ¢/

cache.put(k2, v2); V

tx.commit(); E:I

CLIENT

prepare request

}
TX state PREPARING <>
Enlisted entries (k1, v1) w
Locked keys k1
Written WAL
& NODE
primary
w TX state

DISK

& NODE
backup

Enlisted entries

Locked keys

Written WAL

TX state

PREPARING

Enlisted entries

(k1, v1), (k2, v2)

Locked keys

Written WAL

C) TXstate ACTIVE
w Enlisted entries
DISK Locked keys k2
Written WAL
& NODE
primary >
TX state ?

Enlisted entries

Locked keys

Written WAL

DISK

& NODE
backup

40

try (Transaction tx
cache.put(kl, v1); ¢/

cache.put(k2, v2); V

tx.commit(); S

’fl

= txStart()) {

} prepare request
TX state PREPARING TX state PREPARING
Enlisted entries (k1, v1) Enlisted entries (k2, v2)
Locked keys k1 DISK Locked keys k2
Written WAL Written WAL
& NODE & NoDE
primary primary
w TX state TX state ?

DISK

& NODE
backup

CLIENT

Enlisted entries

Locked keys

Written WAL

TX state

PREPARING

Enlisted entries

(k1, v1), (k2, v2)

Locked keys

Written WAL

Enlisted entries

Locked keys

Written WAL

DISK

& NODE

backup

try (Transaction tx = txStart()) { TX state PREPARING

cache.put(kl, vi); 4/ Enlisted entries (k1, v1), (k2, v2)

cache.put(k2, v2); V CLIENT Locked keys

- \\l
tx.commit(); = Written WAL

/)

TX state PREPARING <> C) TXstate PREPARING

Enlisted entries (k1, v1) w w Enlisted entries (k2, v2)

Locked keys k1 DISK Locked keys k2
Written WAL Written WAL
& NoDE & NODE
— prepare request primary primary prepare request —

W TX state PREPARED TX state PREPARED w

Enlisted entries (k1, v1) Enlisted entries (k2, v2)
DISK DISK
Locked keys k1 Locked keys k2
& NODE Written WAL Written WAL & NODE

41 backup backup

try (Transaction tx = txStart()) { TX state PREPARING

cache.put(kl, vi); 4/ Enlisted entries (k1, v1), (k2, v2)

cache.put(k2, v2); V CLIENT Locked keys

- \\l
tx.commit(); = Written WAL

/)

TX state PREPARED <> C) TXstate PREPARED

Enlisted entries (k1, v1) w w Enlisted entries (k2, v2)

Locked keys k1 DISK Locked keys k2

Written WAL Written WAL
& NoDE & NODE

prepare response pﬁmary primary prepare response

W TX state PREPARED TX state PREPARED w

Enlisted entries (k1, v1) Enlisted entries (k2, v2)
DISK DISK
Locked keys k1 Locked keys k2
& NODE Written WAL Written WAL & NODE

42 backup backup

43

try (Transaction tx = txStart()) {
cache.put(kl, v1); V

cache.put(k2, v2); V

|
tx.commit(); E\

TX state
Enlisted entries
Locked keys

Written WAL

DISK

& NoDE
backup

/)

CLIENT

prepare response

PREPARED
(k1, v1)

k1

TX state
Enlisted entries
Locked keys

Written WAL

& NODE
primary
PREPARED
(k1, v1)

k1

TX state
Enlisted entries
Locked keys

Written WAL

prepare response

- TX state

w Enlisted entries
DIsSK

Locked keys

Written WAL
& NoDE
primary
TX state PREPARED
Enlisted entries (k2, v2)
Locked keys k2

Written WAL

PREPARED

(k1, v1), (K2, v2)

PREPARED
(k2, v2)

k2

DISK

& NODE
backup

44

try (Transaction tx = txStart()) {
cache.put(kl, v1); V

cache.put(k2, v2); V

|
tx.commit(); E\

TX state

Enlisted entries
Locked keys

Written WAL

DISK

& NoDE
backup

/)

PREPARED
(k1, v1)

k1

TX state
Enlisted entries
Locked keys

Written WAL

CLIENT

& NODE
primary
PREPARED
(k1, v1)

k1

o

TX state
Enlisted entries
Locked keys

Written WAL

TX state

Enlisted entries

DISK Locked keys
Written WAL
& NoDE
primary
TX state PREPARED
Enlisted entries (k2, v2)
Locked keys k2

Written WAL

COMMITTING

(k1, v1), (K2, v2)

PREPARED
(k2, v2)

k2

DISK

& NODE
backup

45

try (Transaction tx = txStart()) {
cache.put(kl, v1); V

cache.put(k2, v2); V

tx.commit(); E\

TX state
Enlisted entries
Locked keys

Written WAL

DISK

& NoDE
backup

/)

CLIENT

commit request

COMMITTING
(k1, v1)

k1

TX state
Enlisted entries
Locked keys

Written WAL

& NODE
primary
PREPARED
(k1, v1)

k1

TX state
Enlisted entries
Locked keys

Written WAL

commit request

o

TX state

Enlisted entries

DISK Locked keys
Written WAL
& NoDE
primary
TX state PREPARED
Enlisted entries (k2, v2)
Locked keys k2

Written WAL

COMMITTING

(k1, v1), (K2, v2)

COMMITTING
(k2, v2)

k2

DISK

& NODE
backup

46

try (Transaction tx = txStart()) {
cache.put(kl, v1); V

cache.put(k2, v2); V

|
tx.commit(); E\

TX state

Enlisted entries
Locked keys

Written WAL

DISK

& NoDE
backup

/)

COMMITTING

(k1, v1)

(k1, v1)

TX state
Enlisted entries
Locked keys

Written WAL

CLIENT

& NODE
primary
PREPARED
(k1, v1)

k1

o

TX state
Enlisted entries
Locked keys

Written WAL

TX state

Enlisted entries

DISK Locked keys
Written WAL
& NoDE
primary
TX state PREPARED
Enlisted entries (k2, v2)
Locked keys k2

Written WAL

COMMITTING

(k1, v1), (K2, v2)

COMMITTING

(k2, v2)

(k2, v2)

DISK

& NODE
backup

try (Transaction tx = txStart()) { TX state COMMITTING

cache.put(kl, vi); 4/ Enlisted entries (k1, v1), (k2, v2)

cache.put(k2, v2); V CLIENT Locked keys

- \\l
tx.commit(); = Written WAL

/)

TX state COMMITTING <> C) TXstate COMMITTING

Enlisted entries (k1, v1) w w Enlisted entries (k2, v2)

Locked keys Locked keys

DISK
Written WAL (k1, v1) Written WAL (k2, v2)
& NoDE & NODE
— commit request primary primary commit request o

W TX state COMMITTING TX state COMMITTING w

Enlisted entries (k1, v1) Enlisted entries (k2, v2)
DISK DISK
Locked keys k1 Locked keys k2
& NODE Written WAL Written WAL & NODE

47 backup backup

try (Transaction tx = txStart()) { TX state COMMITTING

cache.put(kl, vi); 4/ Enlisted entries (k1, v1), (k2, v2)

cache.put(k2, v2); V CLIENT Locked keys

- \\l
tx.commit(); = Written WAL

/)

TX state COMMITTING <> C) TXstate COMMITTING

Enlisted entries (k1, v1) w w Enlisted entries (k2, v2)

Locked keys DISK Locked keys

Written WAL (k1, v1) Written WAL (k2, v2)
& NoDE & NODE
primary primary

w TX state COMMITTED TX state COMMITTED w

Enlisted entries (k1, v1) Enlisted entries (k2, v2)
DISK DISK
Locked keys Locked keys
& NoDE Written WAL (k1, v1) Written WAL (k2, v2) & NoDE

48 backup backup

try (Transaction tx = txStart()) { TX state COMMITTING

cache.put(kl, vi); 4/ Enlisted entries (k1, v1), (k2, v2)

cache.put(k2, v2); V CLIENT Locked keys

- \\l
tx.commit(); = Written WAL

/)

TX state COMMITTED <> C) TXstate COMMITTED

Enlisted entries (k1, v1) w w Enlisted entries (k2, v2)

Locked keys Locked keys

DISK
Written WAL (k1, v1) Written WAL (k2, v2)
& NoDE & NODE
commit response pﬁ.mary prim;w commit response

w TX state COMMITTED TX state COMMITTED w

Enlisted entries (k1, v1) Enlisted entries (k2, v2)
DISK DISK
Locked keys Locked keys
& NoDE Written WAL (k1, v1) Written WAL (k2, v2) & NoDE

49 backup backup

50

try (Transaction tx = txStart()) {
cache.put(kl, v1); V

cache.put(k2, v2); V

|
tx.commit(); E\

TX state
Enlisted entries
Locked keys

Written WAL

DISK

& NoDE
backup

/)

CLIENT

commit response

COMMITTED

(k1, v1)

(k1, v1)

TX state
Enlisted entries
Locked keys

Written WAL

& NoDE
primary

COMMITTED

(k1, v1)

(k1, v1)

TX state

Enlisted entries
Locked keys

Written WAL

COMMITTED

commit response

revoRy_
DISK

& NODE
primary

TX state

Enlisted entries

Locked keys

Written WAL

TX state
Enlisted entries
Locked keys

Written WAL

COMMITTED

(k2, v2)

(k2, v2)

(k1, v1), (K2, v2)

COMMITTED

(k2, v2)

(k2, v2)

DISK

& NODE
backup

try (Transaction tx = txStart()) { TX state COMMITTED

cache.put(kl, vi); 4/ Enlisted entries (k1, v1), (k2, v2)

cache.put(k2, v2); V CLIENT Locked keys

tx.commit(); V Written WAL

TX state COMMITTED <> C) TXstate COMMITTED

Enlisted entries (k1, v1) w w Enlisted entries (k2, v2)

Locked keys Locked keys

DISK
Written WAL (k1, v1) Written WAL (k2, v2)
& NoDE & NODE

primary primary

TX state COMMITTED TX state COMMITTED w

Enlisted entries (k1, v1) Enlisted entries (k2, v2)
DISK DISK
Locked keys Locked keys
& NoDE Written WAL (k1, v1) Written WAL (k2, v2) & NoDE

51 backup backup

Transaction flow and commit protocol: reference

Before commit, updates are enlisted on only the initiator node.

Locks are acquired on the primary node.

On first primary access, the transaction is mapped to a topology version.

On commit, a two-phase commit procedure is started.

In the prepare phase, locks for all data are acquired on primaries and backups.
In the commit phase, data is changed in storage, and locks are released.

P
. . 2”8
52 2020 © GridGain Systems GridGain /==

Transactions interaction with PME

Partition Map Exchange (PME) is a distributed, partition-state
consolidation protocol that is triggered on every topology change.

Reference: Partition Map Exchange under the hood

_ https://cwiki.apache.org/confluence/display/IGNITE/%28Partition+Map%29
+Exchange+-+under+the+hood

Behavior: PME inflicts stop-the-world pause on all user loads.

P
. . 2”8
53 2020 © GridGain Systems GridGain /==

https://cwiki.apache.org/confluence/display/IGNITE/%28Partition+Map%29+Exchange+-+under+the+hood

54

try (Transaction tx = txStart()) {

TX state
CLIENT
& NoDE & NoDE
primary primary

CLIENT

ACTIVE

& NODE
primary

topology version = (2, 0)

95

try (Transaction tx = txStart()) {

cache.put(kl, vi1); V

TX state

CLIENT
& NopE & NoDE
primary primary
k1 locked v

CLIENT

ACTIVE (mapped 2,0)

& NODE
primary

topology version = (2, 0)

56

try (Transaction tx = txStart()) {
cache.put(kl, vi); V

CLIENT

primary
k1 locked v

CLIENT

TX state

primary

ACTIVE (mapped 2,0)

& NODE
primary

topology version = (3, 0)

try (Transaction tx = txStart()) {
cache.put(kl, v1); V

‘ TX state ACTIVE (mapped 2,0)

CLIENT

PME to (3, 0)
awaits TX

blocked by

DISK
& NODE & NODE
primary primary primary
k1 locked v

CLIENT

topology version = (3, 0)

58

try (Transaction tx = txStart()) {

cache.put(kl, vi1); V

blocked by

TX state ACTIVE (mapped 2,0)

CLIENT

blocked by

PME to (3, 0)
awaits first
node

PME to (3, 0)
awaits TX

& NoDE & NoDE
primary primary primary
k1 locked v

CLIENT

topology version = (3, 0)

try (Transaction tx = txStart()) {

cache.put(kl, vi); ¢/ TX state ACTIVE (mapped 2,0)
CLIENT
blocked by
blocked by
PME to (3, 0)
PME_tt°_I!;’ 0) awaits first
awaits node
& NoDE & NoDE
primary primary primary
k1 locked v
try (Transaction tx = txStart()) {
TX state ACTIVE

CLIENT

topology version = (3, 0)

try (Transaction tx = txStart()) {
cache.put(kl, vi); V

TX state ACTIVE (mapped 2,0)

CLIENT
blocked by

blocked by

PME to (3, 0)
awaits first
node

PME to (3, 0)
awaits TX

& NopE & NobDE
primary primary primary
k1 locked v k3 not locked X

try (Transaction tx = tﬁStart()) {
cache.put(k3, v3); -:\
/

N

TX state ACTIVE (mapped 3,0)

CLIENT

topology version = (3, 0)

try (Transaction tx = txStart()) {
cache.put(kl, v1); ¢/

TX state ACTIVE (mapped 2,0)

CLIENT
blocked by

blocked by

PME to (3, 0)
awaits first
node

PME to (3, 0)
awaits TX

& NoDE & NODE & NODE
primary primary primary
k1 locked v k3 not locked X

blocked by

try (Transaction tx = txStart()) {

cache.put(k3, v3); -:"

TX state ACTIVE (mapped 3,0) // awaits PME 71

CLIENT

topology version = (3, 0)

Transaction interaction with PME

PME is a distributed, partition-state consolidation protocol that is
triggered on every topology change.

PME is triggered every time topology changes.
PME to topVer=X can't finish if there are TXs mapped to Y < X.
TXs can’t map to topVer=X if PME isn’t finished.

Caution: PME while long TX is in progress freezes all successive TXs

P
. . 2”8
62 2020 © GridGain Systems GridGain /==

TXrecovery

TX recovery is a safe transaction finish protocol that is used if a
coordinator node or a primary node fails.

P
. . 2”8
63 2020 © GridGain Systems GridGain /==

64

try (Transaction tx = txStart()) {
cache.put(kl, v1); V

cache.put(k2, v2); V

|
tx.commit(); E\

TX state

Enlisted entries
Locked keys

Written WAL

DISK

& NoDE
backup

/)

PREPARED
(k1, v1)

k1

TX state
Enlisted entries
Locked keys

Written WAL

CLIENT

& NODE
primary
PREPARED
(k1, v1)

k1

o

TX state
Enlisted entries
Locked keys

Written WAL

TX state

Enlisted entries

DISK Locked keys
Written WAL
& NoDE
primary
TX state PREPARED
Enlisted entries (k2, v2)
Locked keys k2

Written WAL

COMMITTING

(k1, v1), (K2, v2)

PREPARED
(k2, v2)

k2

DISK

& NODE
backup

65

try (Transaction tx = txStart()) {

cache.put(kl, v1); V

cache.put(k2, v2); V

|
tx.commit(); E\

TX state

Enlisted entries
Locked keys

Written WAL

DISK

& NoDE
backup

/)

PREPARED
(k1, v1)

k1

TX state
Enlisted entries
Locked keys

Written WAL

& NODE
primary
PREPARED
(k1, v1)

k1

o

TX state
Enlisted entries
Locked keys

Written WAL

TX state

Enlisted entries

DISK Locked keys
Written WAL
& NoDE
primary
TX state PREPARED
Enlisted entries (k2, v2)
Locked keys k2

Written WAL

COMMITTING

(k1, v1), (K2, v2)

PREPARED
(k2, v2)

k2

DISK

& NODE
backup

???

TX state PREPARED <>
Enlisted entries (k1, v1) w
Locked keys k1
Written WAL
& NODE
??? primary
w TX state PREPARED
Enlisted entries (k1, v1)
DISK
Locked keys k1
& NoDE Written WAL
backup

???

C) TXstate PREPARED
w Enlisted entries (k2, v2)
DISK Locked keys k2
Written WAL
& NODE
primary ???
TX state PREPARED w
Enlisted entries (k2, v2)
DISK
Locked keys k2
Written WAL & NODE

backup

67

TX recovery
messages
between all
participants

TX state PREPARED <> C) TXstate PREPARED

Enlisted entries (k1, v1) w w Enlisted entries (k2, v2)

Locked keys k1 DISK Locked keys k2

Written WAL Written WAL

primary primary
w TX state PREPARED TX state PREPARED w
Enlisted entries (k1, v1) Enlisted entries (k2, v2)
DISK DISK

Locked keys k1 Locked keys k2

& NODE Written WAL Written WAL & NoDE

backup

backup

68

Node TX state

primary 1 PREPARED
primary 2 PREPARED
backup 1 PREPARED
backup 2 PREPARED
TX state PREPARED <> C) TXstate PREPARED
Enlisted entries (k1, v1) w w Enlisted entries (k2, v2)
Locked keys k1 DISK Locked keys k2
Written WAL Written WAL
primary primary
w TX state PREPARED TX state PREPARED w
Enlisted entries (k1, v1) Enlisted entries (k2, v2)
DISK DISK
Locked keys k1 Locked keys k2
& NODE Written WAL Written WAL & NODE
backup backup

69

Node TX state
primary 1 PREPARED
primary 2 PREPARED resolution TXis at Iea§t 'PREPA-RED on all participants.
Safe commit is possible.
backup 1 PREPARED
backup 2 PREPARED
TX state PREPARED <> C) TXstate PREPARED
Enlisted entries (k1, v1) w w Enlisted entries (k2, v2)
Locked keys k1 DISK Locked keys k2
Written WAL Written WAL
NODE NODE
$ $
primary primary
w TX state PREPARED TX state PREPARED w
Enlisted entries (k1, v1) Enlisted entries (k2, v2)
DISK DISK
Locked keys k1 Locked keys k2
& NoDE Written WAL Written WAL & NoDE
backup backup

70

TX recovery
messages
between all
participants

TX state PREPARED <> C) TXstate ACTIVE

Enlisted entries (k1, v1) w w Enlisted entries (k2, v2)

Locked keys k1 DISK Locked keys k2

Written WAL Written WAL

primary primary
w TX state PREPARED TX state ACTIVE w
Enlisted entries (k1, v1) Enlisted entries (k2, v2)
DISK DISK

Locked keys k1 Locked keys k2

& NODE Written WAL Written WAL & NoDE

backup

backup

71

Node TX state

primary 1 PREPARED

primary2 ACTIVE

backup 1 PREPARED

backup 2 ACTIVE
TX state PREPARED 4>
Enlisted entries (k1, v1) w
Locked keys k1

Written WAL

primary

DISK

TX state

ACTIVE

Enlisted entries

(k2, v2)

Locked keys

Written WAL

& NoDE
primary

DISK

& NoDE
backup

TX state PREPARED
Enlisted entries (k1, v1)
Locked keys k1

Written WAL

TX state ACTIVE
Enlisted entries (k2, v2)
Locked keys k2
Written WAL

DISK

& NoDE
backup

12

Node TX state
primary 1 PREPARED TX is not PREPARED on some participants.
primary2 ACTIVE resolution No data is updated anywhere.
Safe rollback is possible.
backup1 PREPARED P
backup 2 ACTIVE
TX state PREPARED <> C) TXstate ACTIVE
Enlisted entries (k1, v1) w w Enlisted entries (k2, v2)
Locked keys k1 DISK Locked keys k2
Written WAL Written WAL
/ & NODE & NODE
primary primary
W TX state PREPARED TX state ACTIVE w
Enlisted entries (k1, v1) Enlisted entries (k2, v2)
DISK DISK
Locked keys k1 Locked keys k2
& NODE Written WAL Written WAL & NoDE
backup backup

TX recovery: reference

- When a participant node crashes, distributed TX recovery starts.

- All participant nodes exchange TX state.

- If all nodes are PREPARED and above, TX is committed.

- If anode is below PREPARED, TX is rolled back.

- Invariants:
- If TX has changed data somewhere, TX is PREPARED or above on all nodes.
- If TX is below PREPARED somewhere, TX hasn’t changed data anywhere.

P
. . 2”8
73 2020 © GridGain Systems GridGain /==

 Tips for moving safely into production
e Recommendations to avoid delays
e Troubleshooting

P
. . 2”8
74 2020 © GridGain Systems GridGain /==

Pitfall: key contention

Key locks are exclusive.
Concurrent transactions that access the same key queue on the key.

try (Transaction tx1l = txs.txStart(PESSIMISTIC, REPEATABLE_READ)) {

cache.put(hotKey, vall); actionl() .
)
actionl(); happens
}
before

try (Transaction tx2 = txs.txStart(PESSIMISTIC, REPEATABLE_READ)) {

cache.put(hotKey, val2); aCtiOT;VZ() ;
’

action2();

}

TX latency increases, all of the load freezes in case of PME.

P
. . 2”8
75 2020 © GridGain Systems GridGain /==

Pitfall: heavy activities inside the transaction

try (Transaction tx = txs.txStart(PESSIMISTIC, REPEATABLE_READ)) {
cache.put(k, v);

callToExternalSlowService(); // Keys and topology are locked
g

Dependent load may freeze for the duration of the long call.
In the case of PME, all of the load freezes.

P
. . 2”8
76 2020 © GridGain Systems GridGain /==

77

Pitfall: key-level deadlock

Thread 1:

try (Transaction tx
cache.put(kl, vl);
cache.put(k2, v2);

}

Thread 2:

try (Transaction tx
cache.put(k2, v2);
cache.put(kl, vl1);

s

txs.txStart(PESSIMISTIC, REPEATABLE_READ)) {

txs.txStart(PESSIMISTIC, REPEATABLE_READ)) {

Deadlock risk on k1 and k2 key locks

2020 © GridGain Systems

. . /:
GridGain/==

Avoiding pitfalls

P
. . 2”8

7
78 2020 © GridGain Systems GridGain /==

Avoiding pitfalls: timeouts

txTimeout

Required for production use
txConfiguration.setDefaultTxTimeout(timeout);

Applied for transactions that do not have an explicit timeout specification
txConfiguration.setTxTimeoutOnPartitionMapExchange();

Used to specify a shorter timeout, in case PME is in progress

P
. . 2”8
79 2020 © GridGain Systems GridGain /==

Avoiding pitfalls: deadlocks

txConfiguration.setDefaultTxTimeout(timeout);
Deadlock detection is triggered only on timeout

Preserve global order of key access

try (Transaction tx = txs.txStart(PESSIMISTIC, REPEATABLE_READ)) {
cache.putAll(new TreeMap<>(updateMap));

}

Use OPTIMISTIC, SERIALIZABLE if other options are not possible

P
. . 2”8
80 2020 © GridGain Systems GridGain /==

Troubleshooting: reading logs

P
. . 2”8
81 2020 © GridGain Systems GridGain /==

Reading logs: long-running transactions

Logs report on long-running transactions.

[2020-06-08 03:26:00,858] [WARN][grid-timeout-worker-#23%internal.TransactionsMXBeanImplTest@%][root]
First 10 long running transactions [total=1]

[2020-06-08 03:26:00,859][WARN |[grid-timeout-worker-#23%internal.TransactionsMXBeanImplTest@%][root]
>>> Transaction [startTime=03:26:00.447, curTime=03:26:00.855, systemTime=0, userTime=408,
tx=GridNearTxLocal [mappings=IgniteTxMappingsImpl [], nearLocallyMapped=false,
colocatedLocallyMapped=false, needCheckBackup=null, hasRemotelLocks=false, trackTimeout=false,
systemTime=0, systemStartTime=0, prepareStartTime=0, prepareTime=0, commitOrRollbackStartTime=0,

P
. . 2”8
82 2020 © GridGain Systems GridGain /==

83

Reading logs: TX deadlock

Logs provide detailed information about TX deadlock.

Deadlock detected:

Kl1: TX1 holds lock, TX2 waits lock.
K2: TX3 holds lock, TX1 waits lock.
K3: TX4 holds lock, TX3 waits lock.
Kd: TX2 holds lock, TX4 waits lock.

Transactions:

TX1 [txId=GridCacheVersion [topVer=203056358,
4824-8dd3-5991a3300001, threadId=1335]
TX2 [txId=GridCacheVersion [topVer=203056358,
406b-a696-9¢c846Ta00002, threadId=1331]
TX3 [txId=GridCacheVersion [topVer=203056358,
467d-b838-985a7e600000, threadId=1333]
TX4 [txId=GridCacheVersion [topVer=203056358,
467d-b838-985a7e600000, threadId=1336]

Keys:

K1 [key=30, cache=cache]
K2 [key=20, cache=cache]
K3 [key=11, cache=cache]
K4 [key=18, cache=cache]

2020 © GridGain Systems

order=1591576409356,
order=1591576409357,
order=1591576409358,

order=1591576409357,

nodeOrder=2],
nodeOrder=3],
nodeOrder=1],

nodeOrder=1],

nodeId=09ec0592-19d1-

nodeld=e8d66155-873c-

nodeId=8598c47f-55f2-

nodeIld=8598c47f-55f2-

. . t’=
GridGain/==

Reading logs: heavy activities inside the

transaction

Logs provide stack trace of the TX owner thread on the initiator node.

[2020-06-08 ©03:37:42,127] [WARN][grid-timeout-worker-#598%internal.TransactionsMXBeanImplTest0%][root]
Dumping the near node thread that started transaction [xidVer=GridCacheVersion [topVer=203056662,
order=1591576659549, nodeOrder=1], nodeld=91dd5170-12d4-40d8-99f7-4a12ecc00000]
Stack trace of the transaction owner thread:
Thread [name="te5t—runner—#57ﬁ%internal.TransactionsMXBeanImplTest%“, 1d=620, state=TIMED_WAITING,
blockCnt=1, waitCnt=7]

at java.lang.Thread.sleep(Native Method)

at o.a.i1.1.util.IgniteUtils.sleep(IgniteUtils.java:8023)

at o.a.i1.testframework.GridTestUtils.waitForCondition(GridTestUtils.java:1969)

at
o.a.l.1.TransactionsMXBeanImplTest.checkLongOperationsDumpTimeoutViaTxMxBean(TransactionsMXBeanImplTest

.java:297)

at
o.a.1l.1.TransactionsMXBeanImplTest.testLongOperationsDumpTimeoutPositive(TransactionsMXBeanImplTest. jav

a:131)

at sun.reflect.NativeMethodAccessorImpl. invoke®(Native Method)

P
. . 2”8
84 2020 © GridGain Systems GridGain /==

Reading logs: PME is blocked by transaction

Logs report if PME can't finish due to an ongoing transaction.

[2020-06-08 03:45:39,090] [WARN][exchange-worker-#185%persistence.IgnitePdsTxCacheRebalancingTest1%]
[diagnostic] Failed to wait for partition release future [topVer=AffinityTopologyVersion [topVer=7,
minorTopVer=0], node=b4bf7fbe-8250-4f1b-9501-b2b78c600001]

[2020-06-08 03:45:39,124] [WARN][exchange-worker-#185%persistence.IgnitePdsTxCacheRebalancingTest1%]
[diagnostic] Pending transactions:

[2020-06-08 03:45:39,125][WARN][exchange-worker-#185%persistence.IgnitePdsTxCacheRebalancingTest1%]
[diagnostic] >>> [txVer=AffinityTopologyVersion [topVer=4, minorTopVer=1], exchWait=true,
tx=GridNearTxLocal [mappings=IgniteTxMappingsImpl [], nearLocallyMapped=false,
colocatedLocallyMapped=false, needCheckBackup=null, hasRemotelLocks=true, trackTimeout=false,
systemTime=13593100, systemStartTime=924183821725900, prepareStartTime=0, prepareTime=0,

commitOrRollbackStartTime=0, commitOrRollbackTime=0,
txDumpsThrottling=0.a.1.1.processors.cache.transactions.IgniteTxManager$TxDumpsThrottling@6f26bflc,

P
. . 2”8
85 2020 © GridGain Systems GridGain /==

TX tracing: coming soon

Reports activity on all nodes as OpenCensus spans to the tracing system
Allows tracing of the complete transaction flow
Enables tracing of transactions selectively by label

ignite.transactions().withLabel()5

P
. . 2”8
86 2020 © GridGain Systems GridGain /==

[

Dashboard

Baseline

Snapshots
L]
(]
Clusters

Admin

2019.12.00

. . A
GridGain/sm

CONTROL CENTER

Name Start Time Duration Total Spans Details

transaction Jun 8,12:07:11.221 107 ms 29

transaction Jun 8,12:07:10.563 106 ms a1

transaction Jun 8, 12:07:08.542 109 ms 41

transaction Jun 8,12:07:07.855 114 ms 41

transaction Jun 8,12:07:06.116 116 ms 41

discovery.node.join.request Jun 8,12:07:00.111 58 ms 9

discovery.custom.event Jun 8, 12:06:48.841 4ms 3 Message Class: ChangeGlobalStateFinishMessage
discovery.custom.event Jun 8,12:06:48.827 7ms 4 Message Class: DistributedMetaStorageCasMessage
discovery.custom.event Jun 8, 12:06:48.519 38 ms 4 Message Class: DistributedMetaStorageUpdateMessage
discovery.custom.event Jun 8, 12:06:48.512 384 ms 5 Message Class: ChangeGlobalStateMessage
discovery.node.join.request Jun 8, 12:06:48.403 102 ms 7

& dream

transaction

Trace Start June 8, 2020 at 12:07:10.563 GMT+3 Duration

transaction

6 Total Spans 41

Node ID: ECCOA836

transactions.colocated.lock.map
Node ID: ECC9AB36

transactions.near.enlist.read
Node ID: ECC9A836

transactions.colocated.lock.map
Node ID: ECCI9AB36

transactions.colocated.lock.map
Node ID: ECC9AB36

transactions.lock.map.proceed
Node ID: ECCI9A836

transactions.near.enlist.write
Node ID: ECCIA836

transactions.near.enlist.write
Node ID: ECCIA836

transactions.near.enlist.write
Node ID: ECCIA836

transactions.colocated.lock.map
Node ID: ECC9A836

TX tracing: reference

IEP-48: Tracing
_ https://cwiki.apache.org/confluence/display/IGNITE/IEP-48%3A+Tracing

Tracing documentation on GridGain dev portal
_ https://www.gridgain.com/docs/control-center/latest/tracing

P
. . 2”8
88 2020 © GridGain Systems GridGain /==

https://cwiki.apache.org/confluence/display/IGNITE/IEP-48%3A+Tracing
https://www.gridgain.com/docs/control-center/latest/tracing

Thanks for your attention!
Questions?

e-mail: irakov@gridgain.com

public list for discussions: user@ignite.apache.org

P
. . 2”8
89 2020 © GridGain Systems GridGain /==

