
Moving Apache Ignite into Production: 
Best Practices for Distributed Transactions

Ivan Rakov

June 10, 2020

2020 © GridGain Systems



2020 © GridGain Systems

June 10, 2020

Ivan Rakov

● Leader of the data-consistency 

development team, GridGain Systems

● Apache® Ignite™ Committer



2020 © GridGain Systems

Ignite transactions subsystem

3

cacheConfiguration.setCacheAtomicityMode(TRANSACTIONAL);

• Cross-partition

• Cross-cache

• Multi-record

• Multi-node

• Full ACID guarantees

• Failover-safe (still ACID if some of participant nodes fail)



2020 © GridGain Systems

Agenda

4

• API overview

• Isolation and concurrency

• What happens under the hood

• Transaction flow and commit protocol

• TX recovery

• Tips for moving safely into production

• Recommendations to avoid delays

• Troubleshooting



2020 © GridGain Systems

Agenda

5

• API overview

• Isolation and concurrency

• What happens under the hood

• Transaction flow and commit protocol

• TX recovery

• Tips for moving safely into production

• Recommendations to avoid delays

• Troubleshooting



2020 © GridGain Systems

Entry point to transactions API

6

ignite.transactions();

Main facade for transactions API



2020 © GridGain Systems

Transaction start

7

transactions.txStart(concurrency, isolation, timeout, txSize);

– concurrency = PESSIMISTIC, OPTIMISTIC

– isolation = READ_COMMITTED, REPEATABLE_READ, SERIALIZABLE

– timeout = transaction to be rolled back after the specified period

– txSize = expected number of affected entries

• The transaction is started and is attached to the current thread.

• All cache operations that are executed in the current thread are within the 

transaction.



2020 © GridGain Systems

Transaction start

8

transactions.txStart(concurrency, isolation, timeout, txSize);



2020 © GridGain Systems

Current transaction retrieval

9

transactions.tx();

Returns the transaction instance that is attached to the current thread



2020 © GridGain Systems

Transaction commit

10

tx.commit();

• The transaction commit is performed.

• Data is not changed, unless commit is called.



2020 © GridGain Systems

Transaction close

11

tx.close();

• Transaction detached from the current thread

• Transaction rolled back, if it wasn’t committed



2020 © GridGain Systems

Transaction rollback

12

tx.setRollbackOnly();

• Makes rollback the only possible outcome of transaction

• Affects state, if called before commit();

tx.rollback();

Performs greedy and synchronous transaction rollback



2020 © GridGain Systems

Implicit transactions

13

tx.implicit();

• Returns true, if the transaction was started implicitly—without txStart();

• cache.putAll(map);

– Starts implicit transactions



2020 © GridGain Systems

Suspending and resuming transactions

14

tx.suspend();

Detaches the transaction from the current thread

tx.resume();

Attaches the suspended transaction to the current thread



2020 © GridGain Systems

Transaction states

15

tx.state();

Transaction state Comment

ACTIVE transactional activity in progress

SUSPENDED transaction activity paused, but can be resumed from any thread

MARKED_ROLLBACK transactional activity in progress, but commit isn’t possible

PREPARING commit preparing

PREPARED commit prepared

COMMITTING commit in progress, data storage being updated

COMMITTED commit finished

ROLLING_BACK rollback in progress

ROLLED_BACK rollback finished



2020 © GridGain Systems

Transaction state flow

16

ACTIVE PREPARING

PREPARED

COMMITTING

COMMITTED

MARKED_ROLLBACK

ROLLING_BACK

ROLLED_BACK

SUSPENDED



2020 © GridGain Systems

Exceptions to check

17

• TransactionRollbackException—on automatic rollback

• TransactionTimeoutException—on timeout

• TransactionDeadlockException—on key-level deadlock

• TransactionOptimisticException—on optimistic lock failure

• ClusterTopologyException—on primary node fail



2020 © GridGain Systems

Agenda

18

• API overview

• Isolation and concurrency

• What happens under the hood

• Transaction flow and commit protocol

• TX recovery

• Tips for moving safely into production

• Recommendations to avoid delays

• Troubleshooting



2020 © GridGain Systems

OPTIMISTIC, READ_COMMITTED

19

Use case 1: atomic batch update



2020 © GridGain Systems

PESSIMISTIC, READ_COMMITTED

20

Use case 2: exclusive update



2020 © GridGain Systems

PESSIMISTIC, REPEATABLE_READ

21

Use case 3: safe payment processing



2020 © GridGain Systems

Snapshot isolation

22

Snapshot isolation is a guarantee that all reads made in a transaction will 

see a consistent snapshot of the database.

• Unavailable in Ignite transactions

• Supported in MVCC mode (since 2.7, beta)

• Capable of being emulated



2020 © GridGain Systems

OPTIMISTIC, SERIALIZABLE

23

Use case 4: emulation of snapshot isolation



2020 © GridGain Systems

Transactional caches

24

OPTIMISTIC /

READ_COMMITTED*

PESSIMISTIC / 

READ_COMMITTED

PESSIMISTIC / 

REPEATABLE_READ

OPTIMISTIC / 

SERIALIZABLE

ACID guarantees ✔ ✔ ✔ ✔

Locks on write

(exclusive update possible)

x ✔ ✔ ✔ (optimistic lock)

Locks on read

(payment processing possible)

x x ✔ ✔ (optimistic lock)

Forced rollback on concurrent update is possible x x x ✔ (if optimistic 

locking fails)

Automatic resolution of deadlocks that are 

caused by the application

x x x ✔

* Batch putAll also has OPTIMISTIC / READ_COMMITTED guarantees



2020 © GridGain Systems

Agenda

25

• API overview

• Isolation and concurrency

• What happens under the hood

• Transaction flow and commit protocol

• TX recovery

• Tips for moving safely into production

• Recommendations to avoid delays

• Troubleshooting



2020 © GridGain Systems

Transaction flow and commit protocol

26



27



28



29



30



31



32



33



34



35



36



37



38



39



40



41



42



43



44



45



46



47



48



49



50



51



2020 © GridGain Systems

Transaction flow and commit protocol: reference

52

• Before commit, updates are enlisted on only the initiator node.

• Locks are acquired on the primary node.

• On first primary access, the transaction is mapped to a topology version.

• On commit, a two-phase commit procedure is started.

• In the prepare phase, locks for all data are acquired on primaries and backups.

• In the commit phase, data is changed in storage, and locks are released.



2020 © GridGain Systems

Transactions interaction with PME

53

• Reference: Partition Map Exchange under the hood

– https://cwiki.apache.org/confluence/display/IGNITE/%28Partition+Map%29

+Exchange+-+under+the+hood

• Behavior: PME inflicts stop-the-world pause on all user loads.

Partition Map Exchange (PME) is a distributed, partition-state 

consolidation protocol that is triggered on every topology change.

https://cwiki.apache.org/confluence/display/IGNITE/%28Partition+Map%29+Exchange+-+under+the+hood


54



55



56



57



58



59



60



61



2020 © GridGain Systems

Transaction interaction with PME

62

• PME is triggered every time topology changes.

• PME to topVer=X can’t finish if there are TXs mapped to Y < X.

• TXs can’t map to topVer=X if PME isn’t finished.

Caution: PME while long TX is in progress freezes all successive TXs

PME is a distributed, partition-state consolidation protocol that is 

triggered on every topology change.



2020 © GridGain Systems

TX recovery

63

TX recovery is a safe transaction finish protocol that is used if a 

coordinator node or a primary node fails.



64



65



66



67



68



69



70



71



72



2020 © GridGain Systems

TX recovery: reference

73

• When a participant node crashes, distributed TX recovery starts.

• All participant nodes exchange TX state.

• If all nodes are PREPARED and above, TX is committed.

• If a node is below PREPARED, TX is rolled back.

• Invariants:

– If TX has changed data somewhere, TX is PREPARED or above on all nodes.

– If TX is below PREPARED somewhere, TX hasn’t changed data anywhere.



2020 © GridGain Systems

Agenda

74

• API overview

• Isolation and concurrency

• What happens under the hood

• Transaction flow and commit protocol

• TX recovery

• Tips for moving safely into production

• Recommendations to avoid delays

• Troubleshooting



2020 © GridGain Systems

Pitfall: key contention

75

• Key locks are exclusive.

• Concurrent transactions that access the same key queue on the key.

• TX latency increases, all of the load freezes in case of PME.

action1();

action2();

happens

before



2020 © GridGain Systems

Pitfall: heavy activities inside the transaction

76

• Dependent load may freeze for the duration of the long call.

• In the case of PME, all of the load freezes.



2020 © GridGain Systems

Pitfall: key-level deadlock

77

Deadlock risk on k1 and k2 key locks



2020 © GridGain Systems

Avoiding pitfalls

78



2020 © GridGain Systems

Avoiding pitfalls: timeouts

79

• txTimeout

Required for production use

• txConfiguration.setDefaultTxTimeout(timeout);

Applied for transactions that do not have an explicit timeout specification

• txConfiguration.setTxTimeoutOnPartitionMapExchange();

Used to specify a shorter timeout, in case PME is in progress



2020 © GridGain Systems

Avoiding pitfalls: deadlocks

80

• txConfiguration.setDefaultTxTimeout(timeout);

Deadlock detection is triggered only on timeout

• Preserve global order of key access

• Use OPTIMISTIC, SERIALIZABLE if other options are not possible



2020 © GridGain Systems

Troubleshooting: reading logs

81



2020 © GridGain Systems

Reading logs: long-running transactions

82

Logs report on long-running transactions.



2020 © GridGain Systems

Reading logs: TX deadlock

83

Logs provide detailed information about TX deadlock.



2020 © GridGain Systems

Reading logs: heavy activities inside the 
transaction

84

Logs provide stack trace of the TX owner thread on the initiator node.



2020 © GridGain Systems

Reading logs: PME is blocked by transaction

85

Logs report if PME can’t finish due to an ongoing transaction.



2020 © GridGain Systems

TX tracing: coming soon

86

• Reports activity on all nodes as OpenCensus spans to the tracing system

• Allows tracing of the complete transaction flow

• Enables tracing of transactions selectively by label



87



2020 © GridGain Systems

TX tracing: reference

88

• IEP-48: Tracing 

– https://cwiki.apache.org/confluence/display/IGNITE/IEP-48%3A+Tracing

• Tracing documentation on GridGain dev portal

– https://www.gridgain.com/docs/control-center/latest/tracing

https://cwiki.apache.org/confluence/display/IGNITE/IEP-48%3A+Tracing
https://www.gridgain.com/docs/control-center/latest/tracing


2020 © GridGain Systems89

Thanks for your attention!

Questions?

e-mail: irakov@gridgain.com

public list for discussions: user@ignite.apache.org


