

Cluster Memory Management Techniques Preventing Out of Memory Incidents

Denis Magda Apache Ignite PMC; Head of DevRel at GridGain

Agenda

- 1. Ignite storage engine
- 2. Generic techniques:
 - Eviction and expiration policies
- **3**. Off-heap specific techniques:
 - Swapping
 - Ignite Native Persistence
- 4. Java heap specific techniques:
 - SQL memory quotas

Ignite Storage Engine

Apache Ignite as a Cache or as a Database

Ignite as a Cache and Data Grid

Ignite as a Database

Ignite Memory Tier

Ignite B-tree Storage Engine

Memory segment

Querying Across Memory and Disk

Memory segment

Eviction Policies

Eviction Policies for the Off-Heap Memory

- Supported configurations
 - Pure in-memory cluster
 - In-memory cluster with external DBs
- Supported algorithms
 - Random-LRU
 - Random-2-LRU

t - page's last access time

Eviction Policies: Configuration

```
DataStorageConfiguration storageCfg = new DataStorageConfiguration();
    DataRegionConfiguration regionCfg = new DataRegionConfiguration();
    regionCfg.setName("20GB_Region");
    // 500 MB initial region size (RAM).
2.
    regionCfg.setInitialSize(500L * 1024 * 1024);
    // 20 GB maximum region size (RAM).
3.
    regionCfg.setMaxSize(20L * 1024 * 1024 * 1024);
    // Enabling RANDOM 2_LRU eviction for this region.
    regionCfg.setPageEvictionMode(DataPageEvictionMode.RANDOM_2_LRU);
```


Bringing evicted records back

- Ignite + external database
 - Key-value APIs can load missing records from disk
- All other scenarios
 - You need to reload evicted records manually

Eviction Policies for Java Heap

- On-heap caches are **used rarely**
 - <u>https://ignite.apache.org/docs/latest/configuring-caches/on-heap-caching</u>
- Supported for on-heap caches only
 - LRU, FIFO, Sorted

Expiration Policies

Expiration Policies Removing unnecessary records proactively

Different expiration policies for different records

cache.put(1, "some value");

Swapping

- Ignite can store data in memory-mapped files
- OS swaps data in/out to balance memory usage
- Swap space is cleared on restarts, records are lost
 - Thus, scale out and get data rebalanced asap
 - Why? To avoid potential data loss
- Swapping might impact latency even if memory is enough
 - See vm.swappinness, vm.extra_free_kbytes, etc.

Swapping configuration


```
DataStorageConfiguration storageCfg = new DataStorageConfiguration();
DataRegionConfiguration regionCfg = new DataRegionConfiguration();
regionCfg.setName("500MB_Region");
regionCfg.setInitialSize(100L * 1024 * 1024);
regionCfg.setMaxSize(5L * 1024 * 1024 * 1024);
```

// Enable swap space.

regionCfg.setSwapPath("/path/to/some/directory");

// Setting the data region configuration.
storageCfg.setDataRegionConfigurations(regionCfg);

Ignite Native Persistence

Ignite Native Persistence

- Distributed Persistence Tier
 - Fully transactional and consistent
 - No need to cache 100% of data in RAM
 - No need to warm-up RAM on restarts
- Performance vs. Cost Tradeoff
 - Cache more for fastest performance
 - Cache less to reduce infrastructure costs

Enabling Ignite Native Persistence

storageCfg.getDefaultDataRegionConfiguration().setPersistenceEnabled(true);

SQL Memory Quotas

Query Execution Phases

Java Heap Usage During Query Execution

Memory Quotas Configuration

IgniteConfiguration cfg = new IgniteConfiguration();
SqlConfiguration sqlCfg = new SqlConfiguration();

// All running SQL queries combined cannot use more memory as set here.
sqlCfg.setSqlGlobalMemoryQuota("500M");

// A single running SQL query cannot use more memory as set below.
sqlCfg.setSqlQueryMemoryQuota("40MB");

// If any of the quotas is exceeded, a result set will be offloaded to disk.
sqlCfg.setSqlOffloadingEnabled(true);

2.

3.

When Should You Use Quotas?

- Sorting (ORDER BY)
- Grouping (DISTINCT, GROUP BY)
- Complex subqueries
- Complex analytical queries

Summary

- Prefer Ignite Native Persistence as OOM preventive measure
 - Otherwise, check eviction and expiration policies, or swapping
- Use memory quotas for SQL (especially for analytics)
 - Don't forget to enable the offloading to disk feature
- Scale out the cluster when you're running out of memory
 - To have the best performance characteristics

Monitor Memory Usage With GridGain Control Center

E GridGain Trial: Not for Production Usage				
Dashboard Alerning Soul Soul Chatters	Default : Storage Usage : +		Last 30 minutes - ADD WIDGET	
	Off-Heap Memory		Java Heap Memory	
	Node ID	default Physical Memory Size	● C1458533 ● E750CC42 ● C0115765	• C1458333 • E75CCCA2 • C0115765
	C145B333	2.25 MB	143.05 MB	143.05 МВ
	E75CCCA2	2.25 MB	95.37 MB 47.58 MB 14.28 14.28 14.30 14.32 14.34 14.38 14.38 14.40 14.42 14.44 14.48 14.48 14.50 14.52 14.54	
				Heep Used
	Disk Storage Size		WAL Size	
	Node ID	Storage Size	Node ID	WAL Total Size
	C145B333	2.23 MB	C145B333	640 MB
	E75CCCA2	2.23 MB	E75CCCA2	640 MB
	Checkpointing Duration		WAL Fsync Duration	
			1500000	© C1458333 © E75CCCA2
			100000	
			500000	
2020.08.09 317	14:26 14:28 14:30 14:32 14:34 14:36 14:38 Last Cr	14:40 14:52 14:52 14:52 14:52 14:52 14:52	14:26 14:28 14:30	Hadz H434 H436 1438 1444 1434 1434 1438 1438 1434 1434
and a				

https://www.gridgain.com/docs/tutorials/management-monitoring/overview

Don't miss Ignite talks at the IMCS Summit October 28-28th

The In-Memory Computing Summit 2020

The Summit is a free, virtual technical conference for the worldwide community which focuses on the full range of in-memory computing-related technologies and solutions. The event will highlight the role of in-memory computing in digital transformation, available technologies, and successful use cases.

https://www.imcsummit.org/2020/virtual/

Stay connected with Apache Ignite users & experts

<u>meetup.com/Apache-Ignite-</u> <u>Virtual-Meetup/</u>

