
How to Migrate Your Data Schema to
Apache Ignite
Ivan Rakov
December 4, 2019

2019 © GridGain Systems

2019 © GridGain Systems2019 © GridGain Systems

How to Migrate Your Data Schema to Apache Ignite

December 4, 2019

2019 © GridGain Systems

Ivan Rakov
● Work at GridGain Systems

○ Leading data consistency dev team
● Apache Ignite Committer

2019 © GridGain Systems2019 © GridGain Systems

Agenda

3

• What is and what is not Ignite SQL: pros and cons

2019 © GridGain Systems2019 © GridGain Systems

Agenda

4

• What is and what is not Ignite SQL: pros and cons
• Ignite SQL typical successful use cases

2019 © GridGain Systems2019 © GridGain Systems

Agenda

5

• What is and what is not Ignite SQL: pros and cons
• Ignite SQL typical successful use cases
• How to cook Ignite SQL: four-step guide

2019 © GridGain Systems2019 © GridGain Systems

Agenda

6

• What is and what is not Ignite SQL: pros and cons
• Ignite SQL typical successful use cases
• How to cook Ignite SQL: four-step guide
• Ignite SQL: performance tuning

2019 © GridGain Systems2019 © GridGain Systems

Agenda

7

• What is and what is not Ignite SQL: pros and cons
• Ignite SQL typical successful use cases
• How to cook Ignite SQL: four-step guide
• Ignite SQL: performance tuning
• Living with Ignite SQL: schema evolution

2019 © GridGain Systems2019 © GridGain Systems

Agenda

8

• What is and what is not Ignite SQL: pros and cons
• Ignite SQL typical successful use cases
• How to cook Ignite SQL: four-step guide
• Ignite SQL: performance fine-tuning
• Living with Ignite SQL: schema evolution

2019 © GridGain Systems2019 © GridGain Systems

Ignite SQL

9

• Ignite can be used as distributed SQL database
– ANSI-99 compliant
– Horizontally scalable
– Fault-tolerant

2019 © GridGain Systems2019 © GridGain Systems

Ignite SQL

10

• Ignite can be used as distributed SQL database
– ANSI-99 compliant
– Horizontally scalable
– Fault-tolerant

• Ignite SQL architecture
– Tightly coupled with H2 database

• parsing, optimizing, local query execution
– Distributed logic based on map-reduce
– Data is stored in Ignite Durable Memory

• RAM offheap speed + optional disk durability

2019 © GridGain Systems2019 © GridGain Systems

Ignite SQL is good for

11

• Providing SQL access to large datasets
– not fitting well in one server

2019 © GridGain Systems2019 © GridGain Systems

Ignite SQL is good for

12

• Providing SQL access to large datasets
– not fitting well in one server

• Fault-tolerance
– one node crashes, but cluster live and SQL works

2019 © GridGain Systems2019 © GridGain Systems

Ignite SQL is good for

13

• Providing SQL access to large datasets
– not fitting well in one server

• Fault-tolerance
– one node crashes, but cluster live and SQL works

• Easy data distribution
– data is partition according to affinity function, no need for manual sharding

2019 © GridGain Systems2019 © GridGain Systems

Ignite SQL is good for

14

• Providing SQL access to large datasets
– not fitting well in one server

• Fault-tolerance
– one node crashes, but cluster live and SQL works

• Easy data distribution
– data is partition according to affinity function, no need for manual sharding

• Providing better query performance than single database server
– all cluster nodes work on your query simultaneously
– true when query fits well in a single map-reduce cycle

• query fits in map-reduce cycle when data rows from different nodes don’t interact

2019 © GridGain Systems2019 © GridGain Systems

Ignite SQL is not good for

15

• Consistent processing
– Ignite SQL is not transactional

2019 © GridGain Systems2019 © GridGain Systems

Ignite SQL is not good for

16

• Consistent processing
– Ignite SQL is not transactional

• AD-HOC SQL
– Custom complex SQL query is likely to run long or even cause OOM

2019 © GridGain Systems2019 © GridGain Systems

Ignite SQL is not good for

17

• Consistent processing
– Ignite SQL is not transactional

• AD-HOC SQL
– Custom complex SQL query is likely to run long or even cause OOM

• Query optimization
– Ignite relies on H2, which is unaware of distributed specifics

2019 © GridGain Systems2019 © GridGain Systems

Ignite SQL is not good for

18

• Consistent processing
– Ignite SQL is not transactional

• AD-HOC SQL
– Custom complex SQL query is likely to run long or even cause OOM

• Query optimization
– Ignite relies on H2, which is unaware of distributed specifics

• Thoughtless usage of blocking operators
– Ignite SQL accumulates intermediate query result in RAM
– group by / order by over large table without condition can cause OOM
– select over large table without condition can cause OOM

2019 © GridGain Systems2019 © GridGain Systems

Agenda

19

• What is and what is not Ignite SQL: pros and cons
• Ignite SQL typical successful use cases
• How to cook Ignite SQL: four-step guide
• Ignite SQL: performance tuning
• Living with Ignite SQL: schema evolution

2019 © GridGain Systems2019 © GridGain Systems

Separating side activities from main SQL processing

20

• Oracle / PostgreSQL / CRM is used for critical business processing
– user transactions, money transfer

2019 © GridGain Systems2019 © GridGain Systems

Separating side activities from main SQL processing

21

• Oracle / PostgreSQL / CRM is used for critical business processing
– user transactions, money transfer

• Side business activities
– end of day / month clearing
– applications maintenance

2019 © GridGain Systems2019 © GridGain Systems

Separating side activities from main SQL processing

22

• Oracle / PostgreSQL / CRM is used for critical business processing
– user transactions, money transfer

• Side business activities
– end of day / month clearing
– applications maintenance

• Which are too resource intensive to run at main DB
– may affect performance of critical operation

2019 © GridGain Systems2019 © GridGain Systems

Separating side activities from main SQL processing

23

• Oracle / PostgreSQL / CRM is used for critical business processing
– user transactions, money transfer

• Side business activities
– end of day / month clearing
– applications maintenance

• Which are too resource intensive to run at main DB
– may affect performance of critical operation

• Or too expensive to run at main DB
– may require buying additional instances
– billing in some SaaS CRMs is bound to number of API calls

2019 © GridGain Systems2019 © GridGain Systems24

Solution:

• Keep your main business activities where they are
• Setup CDC between main database and Ignite SQL database
• Tune Ignite SQL to work well on your specific queries, enjoy the performance

Separating side activities from main SQL processing

CDC replication
main TX
processing

complex
queries

2019 © GridGain Systems2019 © GridGain Systems

Combining Ignite JCache and SQL

25

• Ignite JCache provides ACID distributed transactions
– can be used for business critical processing

2019 © GridGain Systems2019 © GridGain Systems

Combining Ignite JCache and SQL

26

• Ignite JCache provides ACID distributed transactions
– can be used for business critical processing
– not convenient for complex queries: joins, lookups, etc

2019 © GridGain Systems2019 © GridGain Systems

Combining Ignite JCache and SQL

27

Solution:

• Access the same data both with JCache and SQL
– JCache for consistent modification
– SQL for complex queries where consistency under load is not critical

SQL:
complex
queries

JCache:
consistent
updates

2019 © GridGain Systems2019 © GridGain Systems

Agenda

28

• What is and what is not Ignite SQL: pros and cons
• Ignite SQL typical successful use cases
• How to cook Ignite SQL: four-step guide
• Ignite SQL: performance tuning
• Living with Ignite SQL: schema evolution

2019 © GridGain Systems2019 © GridGain Systems

Step one: bootstrap your Ignite SQL schema

29

JCache-first way

• Mark your data classes with annotations
public class Person implements Serializable {

 /** Indexed field. Will be visible for SQL engine. */

 @QuerySqlField (index = true)

 private long id;

 /** Queryable field. Will be visible for SQL engine. */

 @QuerySqlField

 private String name;

 /** Will NOT be visible for SQL engine. */

 private int age;

2019 © GridGain Systems2019 © GridGain Systems

Step one: bootstrap your Ignite SQL schema

30

JCache-first way

• Multi-fields and descending indexes are also supported
public class Person implements Serializable {

 /** Indexed in a group index with "salary". */

 @QuerySqlField(orderedGroups={@QuerySqlField.Group(

 name = "age_salary_idx", order = 0, descending = true)})

 private int age;

 /** Indexed separately and in a group index with "age". */

 @QuerySqlField(index = true, orderedGroups={@QuerySqlField.Group(

 name = "age_salary_idx", order = 3)})

 private double salary;

2019 © GridGain Systems2019 © GridGain Systems31

SQL-first way

• Ignite SQL supports creating table with DDL
• Template allows to specify JCache representation parameters

• CREATE TABLE IF NOT EXISTS Person (
 age int, id int, city_id int, name varchar, company varchar,

 PRIMARY KEY (name, id))
 WITH "key_type=org.company.PersonId, value_type=org.company.PersonInfo”

Step one: bootstrap your Ignite SQL schema

2019 © GridGain Systems2019 © GridGain Systems

Step two: prepare queries that should perform well in advance

32

Case: collect big quantity traders that use basic tariffs at the end of
business day in order to prepare premium account offerings

ACCOUNTS
● int account_id
● int tariff_id
● varchar account_name
● int balance

ORDERS
● int account_id
● int order_id
● int qty
● int instrument_id
● date place_date

TARIFFS
● int tariff_id
● double commission_percentforeign key foreign key

select account_name from ACCOUNTS A inner join ORDERS O on A.account_id = O.accound_id inner
join TARIFFS T on T.tariff_id = A.tariff_id where O.qty > 100 and T.comission_percent > 0.02

2019 © GridGain Systems2019 © GridGain Systems

Step three: collocate your data

33

• By default, distributed joins work only when joined data is collocated

2019 © GridGain Systems2019 © GridGain Systems

Step three: collocate your data

34

• By default, distributed joins work only when joined data is collocated
• You can specify distributedJoins=true parameter at your own risk

– Join will work, but execution time and memory consumption may grow significantly

2019 © GridGain Systems2019 © GridGain Systems

Step three: collocate your data

35

• ORDERS and ACCOUNTS table contain lots of data and joined on account_id
• Mark account_id with @AffinityKeyMapped
• TARIFFS has less data and can’t be colocated along with ORDERS and ACCOUNTS
• Make cache for TARIFFS table REPLICATED

ACCOUNTS
● int account_id
● int tariff_id
● varchar account_name
● int balance

ORDERS
● int account_id
● int order_id
● int qty
● int instrument_id
● date place_date

TARIFFS
● int tariff_id
● double commission_percentforeign key foreign key

2019 © GridGain Systems2019 © GridGain Systems

Step four: tune your performance

36

• Create indexes
– Ignite supports only ordered B+ tree indexes
– Indexing account_id and tariff_id would speed up join

2019 © GridGain Systems2019 © GridGain Systems

Step four: tune your performance

37

• Create indexes
– Ignite supports only ordered B+ tree indexes
– Indexing account_id and tariff_id would speed up join
– Use inlineSize to specify maximum number of index field bytes that

will be inlined in B+ tree
• If index is inlined, lookup won’t require data row dereferencing and will be faster
• CREATE INDEX fast_city_idx ON sales (country, city) INLINE_SIZE 60;

2019 © GridGain Systems2019 © GridGain Systems

Step four: tune your performance

38

• Create indexes
– Ignite supports only ordered B+ tree indexes
– Indexing account_id and tariff_id would speed up join
– Use inlineSize to specify maximum number of index field bytes that

will be inlined in B+ tree
• If index is inlined, lookup won’t require data row dereferencing and will be faster
• CREATE INDEX fast_city_idx ON sales (country, city) INLINE_SIZE 60;

• Proceed to fine-tuning
– Ignite SQL provides various parameters to match your specific query

2019 © GridGain Systems2019 © GridGain Systems

Agenda

39

• What is and what is not Ignite SQL: pros and cons
• Ignite SQL typical successful use cases
• How to cook Ignite SQL: four-step guide
• Ignite SQL: performance fine-tuning
• Living with Ignite SQL: schema evolution

2019 © GridGain Systems2019 © GridGain Systems

Query parallelism

40

By default, every query is executed with one thread per node

• Can be changed with cacheCfg.setQueryParallelism
• Can’t be changed in runtime
• Causes storage place overhead

– every B+ tree is present in queryParallelism instances

2019 © GridGain Systems2019 © GridGain Systems

Lazy flag

41

By default, the whole query result is composed in-memory on reducer

• Can be changed with setLazy
• Use lazy mode for cases when only part of the large result is needed

– Query will be uploaded to reducer in batch on-demand mode
• Won’t help for blocking operators

– like order by / group by

2019 © GridGain Systems2019 © GridGain Systems

Set collocated

42

By default, aggregation functions are considered as non-collocated

• Aggregation is performed on reducer

dataRows

dataRows

reducer node

aggregation
GROUP BY

2019 © GridGain Systems2019 © GridGain Systems

Set collocated

43

By default, aggregation functions are considered as non-collocated

• Aggregation is performed on reducer
• If you are sure that you perform aggregation on collocated field

– Use setCollocated
• Collocation will be performed on mapped nodes, which is more scalable

aggregated
results

reducer node

concatenation
GROUP BY

aggregated
results

local
aggregation

local
aggregation

2019 © GridGain Systems2019 © GridGain Systems

Set IGNITE_SQL_MERGE_TABLE_MAX_SIZE if
big aggregation result is expected

44

By default, aggregation functions are supported for up to 10000
various keys

• If you expect that aggregation on larger number of keys is possible
– Override aforementioned system property

• Can’t be changed in runtime

2019 © GridGain Systems2019 © GridGain Systems

Force tables join order

45

Don’t rely on Ignite query optimizer:
it doesn’t understand distributed specifics well

• Only nested loop joins are supported in Ignite
• Hash joins are present thought, but in experimental mode
• Use EXPLAIN PLAN on your queries
• If you are not satisfied with explained order

– setEnforceJoinOrder=true will force joining in the order of mention

2019 © GridGain Systems2019 © GridGain Systems

Agenda

46

• What is and what is not Ignite SQL: pros and cons
• Ignite SQL typical successful use cases
• How to cook Ignite SQL: four-step guide
• Ignite SQL: performance fine-tuning
• Living with Ignite SQL: schema evolution

2019 © GridGain Systems2019 © GridGain Systems

Schema evolution

47

• You can add or remove columns from table

ALTER TABLE City ADD COLUMN IF NOT EXISTS population int;
ALTER TABLE Person DROP COLUMN (code, gdp);

• Storage data won’t be changed
– Only select (*) is affected

• Changing of column type is not supported
– Remove column and add another with different name instead

2019 © GridGain Systems2019 © GridGain Systems

Summary

48

• Ignite SQL will not serve you like
“as good and universal as Oracle/Postgre, but distributed”

2019 © GridGain Systems2019 © GridGain Systems

Summary

49

• Ignite SQL will not serve you like
“as good and universal as Oracle/Postgre, but distributed”

• Planning your queries and configuring collocation in advance will bring
decent performance, empowered by other Ignite features

2019 © GridGain Systems2019 © GridGain Systems50

Thanks for your attention!
Questions?

e-mail: irakov@gridgain.com

public list for discussions: user@ignite.apache.org

SQL documentation from GridGain:
https://www.gridgain.com/docs/latest/sql-reference/sql-reference-overview

https://www.gridgain.com/docs/latest/sql-reference/sql-reference-overview

