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Topics

• Ignite SQL Basics: DML, DDL, connectivity, configuration
• Affinity Co-Location and Distributed JOINs
• Beyond Memory Capacity: Disk Tier Usage and Memory Quotas
• Ignite SQL Evolution With Apache Calcite



Ignite SQL Basics



Ignite SQL = ANSI SQL at Scale

• ANSI-99 DML and DDL syntax
– SELECT, UPDATE, CREATE…

• Distributed joins, grouping, sorting

• Schema changes in runtime
– ALTER TABLE, CREATE/DROP INDEX

• Works with in-memory and disk-only records
– If Ignite Persistence is used as a disk tier



Connectivity Options

• Thick Client APIs
– Java, C#/.NET, C++

• JDBC and ODBC drivers

• Thin Client APIs
– Multi-language support



Configuration Option #1: 
Programmatically With Annotations

Usage Scenario:
• Spring-style development by annotating POJOs
• DDL can be used to apply changes in runtime.



Configuration Option #2: 
Spring XML With Query Entities

Usage Scenario:
• Ignite as a cache that writes-through 

changes to an external database.

• DDL can be used to apply changes in 
runtime.



Configuration Option #3: 
In Pure SQL With DDL

Usage Scenario:
• SQL-driven applications
• Green-field applications using Ignite as a 

database with its native persistence



Demo Time

Cluster Startup and Database Creation



Affinity Co-Location and
Distributed JOINs



Ignite SQL Engine Internals
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Query Execution Phases
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SQL JOIN With Data Shuffling
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Co-Located Distribution (aka. Affinity Co-Location)
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All You Need is to Configure Affinity Key



Affinity Key to Node Mapping Process
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High-Performance SQL JOIN
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Demo Time

Queries With JOINs



Beyond Memory Capacity:
Disk-Tier and Memory Quotas



Multi-Tier Storage architecture

1. In-Memory - General in-memory 
caching, high-performance 
computing

2. In-Memory + Native Persistence - 
Ignite as an in-memory database

3. In-Memory + External Database - 
Acceleration of services and APIs 
with write-through and write-behind 
capability



Multi-Tier Storage Architecture
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Multi-Tier Storage Architecture

Data page #0 Data page #1

Partition file with Data

Data page #2 Data page #3 Data page #4 Data page #5 Data page #6

Data page #5 Inner page Leaf page Metadata page Leaf page Data page #2 Metadata page
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Java off-heap vs Java heap

SQL query 
processing
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Java off-heap vs Java heap

Sorting

Renaming

Aggregation

Projection

Join

Filtering

ScanningCOUNTRYCITY

σcode in (‘CAN’, ‘FRA’)

⋈country.code = city.countrycode

country.name, city.nameℱMAX(city.population)

τmax_pop

πcountry.name, city.name, city.population

ρname, name0, max_pop

Here we need full set in heap

Here we need full set in heap too



Query memory quotas

How to configure:



Interim results offloading

Sorting

Renaming

Aggregation

Projection

Join

Filtering

ScanningCOUNTRYCITY

σcode in (‘CAN’, ‘FRA’)

⋈country.code = city.countrycode

country.name, city.nameℱMAX(city.population)

τmax_pop

πcountry.name, city.name, city.population

ρname, name0, max_pop

Why don’t you flush result 
sets to disk?

And it



Intermediate results offloading

How to configure:



When you need quotas/offloading enabled

● Sorting (ORDER BY)

● Grouping (DISTINCT, GROUP BY)

● Complex subqueries



Demo Time

Running SQL Over Disk-Only Records



Apache Ignite SQL Evolution
With Apache Calcite



Why do we need it?

Here we need Map-Reduce phase

Here we need Map-Reduce phase too



Typical execution flow
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Apache Calcite
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Need to implement:

● Splitter

● Runtime

● Indexes support

● DML support

● DDL support



Query Parser and Transformer

Select

expr=p.id, d.name

from=person, dep

cond=p.depId = d.id AND  (p.id > 
10 OR p.id < 10000)

order=p.name DESC

offset=10

dep(d)person(p)

σp.id > 10 OR p.id < 10000

⋈p.depId = d.id

τp.name DESC

πp.id, p.name

Query AST

Relational operators tree 
(query plan)



Cost-Based Optimizer
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Cost-Based Splitter

dep(d)person(p)

σp.id > 10 OR p.id < 10000

⋈p.depId = d.id

τp.name DESC

πp.id, p.name

Root



Reactive Execution Flow

Scan Filter Sender Receiver Client cursor

Push Push Send Push
Data flow

Request Request Acknowledge Request

Node buffer Node buffer Node buffer Node buffer

Backpressure

Network communication



Demo Time

Calcite Prototype Demo With Sub-Queries



Learn More

• Apache Ignite SQL
– https://apacheignite-sql.readme.io/docs

• Memory Quotas (available in GridGain Community 
Edition):

– https://www.gridgain.com/docs/latest/developers-guide/me
mory-configuration/memory-quotas

• Demos shown in this webinar
– https://github.com/GridGain-Demos/ignite-sql-intro-samples

• New Apache Calcite-based engine
– https://cwiki.apache.org/confluence/display/IGNITE/IEP-37%3A+New+

query+execution+engine

https://apacheignite-sql.readme.io/docs
https://www.gridgain.com/docs/latest/developers-guide/memory-configuration/memory-quotas
https://www.gridgain.com/docs/latest/developers-guide/memory-configuration/memory-quotas
https://github.com/GridGain-Demos/ignite-sql-intro-samples
https://cwiki.apache.org/confluence/display/IGNITE/IEP-37%3A+New+query+execution+engine
https://cwiki.apache.org/confluence/display/IGNITE/IEP-37%3A+New+query+execution+engine

