
Best	Practices	for	Stream	
Processing	with	GridGain	and	

Apache	Ignite	and	Kafka

Alexey	Kukushkin
Professional	Services

Rob	Meyer
Outbound	Product	Management

Agenda

• Why	we	need	Kafka/Confluent-Ignite/GridGain	integration
• Ignite/GridGain	Kafka/Confluent	Connectors
• Deployment,	monitoring	and	management
• Integration	Examples
• Performance	and	scalability	tuning
• Q	&	A

Why	we	need	
Kafka/Confluent-Ignite/GridGain	
integration

Apache	Kafka	and	Confluent

A	distributed	streaming	
platform:
• Publish/subscribe
• Scalable
• Fault-tolerant
• Real-time
• Persistent
• Written	mostly	in	Scala

GridGain	Company	Confidential

GridGain In-Memory	Computing	Platform

GridGain In-Memory Computing Platform

New Applications, AnalyticsExisting Applications Streaming, Machine Learning

RDBMS NoSQL Hadoop

In-Memory
Data Grid

In-Memory
Database

Streaming
Analytics

• Built	on	Apache	Ignite
• Comprehensive	platform	
that	supports	all	projects

• No	rip	and	replace
• In-memory	speed,	petabyte	scale
• Enables	HTAP,	streaming	analytics
and	continuous	learning

• What	GridGain adds
• Production-ready	releases
• Enterprise-grade	security,	
deployment	and	management

• Global	support	and	services
• Proven	for	mission	critical	apps

Continuous
Learning

ComputeTransactions Continuous Learning
(Machine, Deep Learning)SQLStreaming Services

Spark (DataFrame, RDD, HDFS)ODBC/JDBC

Memory-Centric Storage

Streaming	Analytics,	Machine	and	Deep	Learning

RDBMS NoSQL Hadoop

Native Persistence 3rd party Persistence

NoSQLSQL

Messaging Java, .NET, … R1, Python1

1.	R	and	Python	developers	currently	invoke	Java	classes.	Direct	R	and	Python	support	planned.		

Kafka
Camel
Spark
Storm
JMS
MQTT
…

Kafka
Camel
Spark
Storm
JMS
MQTT
…

Decision AutomationStream Ingestion Machine, Deep Learning AnalyticsStream Processing

Ignite/GridGain	&	Kafka	Integration

• Kafka	is	commonly	used	as	a	
messaging	backbone	in	a	
heterogeneous	system
• Add	Ignite/GridGain	to	a	
Kafka-based	system

https://www.imcsummit.org/2018/eu/session/embracing-service-consumption-shift-banking

Ignite	and	GridGain	Kafka	
Connectors

Developing	Kafka	Consumers	&	Producers

You	can	develop	Kafka	integration	for	any	system	using	Kafka	Producer	
and	Consumer	APIs	but	you	need	to	solve	problems	like:
• How	to	use	each	API	of	every	producer	and	consumer
• How	Kafka	will	understand	your	data
• How	data	will	be	converted	between	producers	and	consumers
• How	to	scale	the	producer-to-consumer	flow
• How	to	recover	from	a	failure
• …	and	many	more

GridGain-Kafka	Connector:	Out-of-the-box	Integration

• Addresses	all	the	integration	challenges	using	best	practices
• Does	not	need	any	coding	even	in	the	most	complex	integrations
• Developed	by	GridGain/Ignite	Community	with	help	from	Confluent	
to	ensure	both	Ignite	and	Kafka	best	practices
• Based	on	Kafka	Connect	and	Ignite	APIs
• Kafka	Connect	API	encourages	design	for	scalability,	failover	and	data	schema
• GridGain	Source	Connector	uses	Ignite	Continuous	Queries
• GridGain	Sink	Connector	uses	Ignite	Data	Streamer

Kafka	Source	and	Sink	Connectors

Kafka	Connect	Server	Types

In	general,	there	are	4	
separate	clusters	in	Kafka	
Connect	infrastructure:
• Kafka	cluster
• cluster	nodes	called	Brokers

• Kafka	Connect	cluster
• cluster	nodes	called	Workers

• Source	and	Sink	
GridGain/Ignite	clusters
• Server	Nodes

GridGain	Connector	Features

Two	connectors	independent	from	each	other:
• GridGain	Source	Connector
• streams	data	from	GridGain	into	Kafka
• uses	Ignite	continuous	queries

• GridGain	Sink	Connector
• streams	data	from	Kafka	into	GridGain
• uses	Ignite	data	streamers

GridGain	Source	Connector:	Scalability

Scales	by	assigning	multiple	source	partitions to	Kafka	Connect	tasks.	
For	GridGain	Source	Connector:
• Partition	=	Cache
• Record	=	Cache	Entry

Kafka	Source	Connector	Model:

GridGain	Source	Connector:	
Rebalancing	and	Failover
Rebalancing:	re-assignment	of	Kafka	Connectors	and	Tasks	to Workers	when

• A	Worker	joins	or	leaves	the	cluster
• A	cache	is	added	or	removed

Failover:	resuming	operation	after	a	failure
• how	to	resume	after	failure	or	rebalancing	without	losing	cache	updates	occurred	
when	Kafka	Worker	node	was	down?

Source	Offset:	position	in	the	source	stream.	Kafka	Connect:
• provides	persistent	and	distributed	source	offset	storage
• automatically	saves	last	committed	offset
• allows	resuming	from	the	last	offset	without	losing	data.

Problem:	caches	have	no	offsets!

GridGain	Source	Connector:	Failover	Policies

• None:	no	source	offset	saved,	start	listening	to	current	data	after	
restart
• Cons:	updates	occurred	during	downtime	are	lost	(“at	least	once”	data	
delivery	guarantee	violated)
• Pros:	fastest

• Full	Snapshot:	no	source	offset	saved,	always	pull	all	data	from	the	
cache	upon	startup
• Cons:	

• Slow,	not	applicable	for	big	caches
• Duplicate	data	(”exactly	once”	data	delivery	guarantee	is	violated)

• Pros:	no	data	is	lost

GridGain	Source	Connector:	Failover	Policies
• Backlog:	resume	from	the	last	
committed	source	offset
• Kafka	Backlog	cache	in	Ignite

• Key:	incremental	offset
• Value:	cache	name	and	serialized	
cache	entries

• Kafka	Backlog	service	in	Ignite
• Runs	continuous	queries	pulling	data	
from	source	caches	into	Backlog

• Source	Connector	gets	data	from	
Backlog	from	backlog	starting	from	
the	last	committed	offset

• Cons
• Intrusive:	GridGain	cluster	impact
• Complex	configuration:	need	to	
estimate	amount	of	memory	for	
Backlog

GridGain	Source	Connector:	
Dynamic	Reconfiguration
Connector	monitors	list	of	available	caches	and	re-configures	itself	if	a	
cache	is	added	or	removed.
Use	cacheWhitelist and cacheBlacklist properties	to	define	from	which	
caches	to	pull	data.	

GridGain	Source	Connector:	Initial	Data	Load

Use	shallLoadInitialData configuration	property	to	specify	if	you	want	
the	Connector	to	load	the	data	that	is	already	in	the	cache	by	the	time	
the	Connector	starts.

GridGain	Sink	Connector

• Sink	Connectors	are	inherently	scalable	since	consuming	data	from	a	
Kafka	topic	is	scalable
• Sink	Connectors	inherently	support	failover	thanks	to	the	Kafka	
Connector	framework	auto-committing	offsets	of	the	pushed	data.

GridGain	Connector	Data	Schema

Both	Source	and	Sink	GridGain	Connectors	support	data	schema.
• Allows	GridGain	Connectors	understand	data	with	attached	schema	from	
other	Kafka	producers	and	consumers
• Source	Connector	attaches	Kafka	schema	built	from	Ignite	Binary	objects
• Sink	Connector	converts	Kafka	records	to	Ignite	Binary	objects	using	Kafka	
schema	

Limitations:
• Ignite	Annotations	are	not	supported
• Ignite	CHAR	converted	to	Kafka	SHORT	(same	for	arrays)
• Ignite	UUID	and	CLASS	converted	to	Kafka	STRING	(same	for	arrays)

Ignite	Connector	Features

• Ignite	Source	Connector
• pushes	data	from	Ignite	into	Kafka
• uses	Ignite	Events
• must	enable	EVT_CACHE_OBJECT_PUT,	which	negatively	impacts	
cluster	performance

• Ignite	Sink	Connector
• pulls	data	from	Kafka	into	Ignite
• use	Ignite	data	streamer

Apache	Ignite	vs.	GridGain	Connectors

Feature Apache	Ignite	Connector GridGain	Connector

Scalability Limited
Source	connector	is	not	parallel
Sink	connector	is	parallel

Source	connector	creates	a	task	per	cache
Sink	connector	is	parallel

Failover NO
Source	data	is	lost	during	connector	
restart	or	rebalancing

YES
Source	connector	can	be	configured	to	
resume	from	the	last	committed	offset

Preserving	source	
data	schema

NO YES

Handling	multiple	
caches

NO YES
Connector	can	be	configured	to	handle	any	
number	of	caches

Dynamic	
Reconfiguration

NO YES
Source	connector	detects	added	or	removed	
caches	and	re-configures	itself

Apache	Ignite	vs.	GridGain	Connectors

Feature Apache	Ignite	Connector GridGain	Connector

Initial	Data	Load NO YES

Handling	data	
removals

YES YES

Serialization	and	
Deserialization	of	
data

YES YES

Filtering Limited
Only	source	connector	supports	a	filter

YES
Both	source	and	sink	connectors	support		
filters

Transformations Kafka	SMTs Kafka	SMTs

Apache	Ignite	vs.	GridGain	Connectors

Feature Apache	Ignite	Connector GridGain	Connector

DevOps Some	free-text	error	logging Health	Model	defined

Support Apache	Ignite	Community Supported	by	GridGain,	certified	by	
Confluent

Packaging Uber	JAR Connector	Package

Deployment Plugin	PATH	on	all	Kafka	Connect	
workers

Plugin	PATH	on	all	Kafka	Connect	workers.
CLASSPATH	on	all	GridGain	nodes.

Kafka	API	Version 0.10 2.0

Source	API Ignite	events Ignite	continuous	queries

Sink	API Ignite	data	streamer Ignite	data	streamer

Deployment,	monitoring	and	
management

GridGain	Connector	Deployment

1. Prepare	Connector	Package
2. Register	Connector	with	Kafka
3. Register	Connector	with	GridGain

Prepare	GridGain	Connector	Package

1. GridGain-Kafka	Connector	is	part	of	GridGain	Enterprise	and	
Ultimate	8.5.3	(to	be	released	in	the	end	of	October	2018)

2. The	connector	is	in	
$GRIDGAIN_HOME/integration/gridgain-kafka-connect

• (GRIDGAIN_HOME	environment	variable	points	to	the	root	GridGain	
installation	directory)

3. Pull	missing	connector	dependencies	into	the	package:
cd $GRIDGAIN_HOME/integration/gridgain-kafka-connect
./copy-dependencies.sh

Register	GridGain	Connector	with	Kafka

For	every	Kafka	Connect	Worker:
1. Copy	GridGain	Connector	package	directory	to	where	you	want	

Kafka	Connectors	to	be	located
for	example,	into		/opt/kafka/connect directory

2. Edit	Kafka	Connect	Worker	configuration	(kafka-connect-
standalone.properties or	kafka-connect-distributed.properties)	to	
register	the	connector	on	the	plugin	path:
plugin.path=/opt/kafka/connect/gridgain-kafka-connect

Register	GridGain	Connector	with	GridGain

This	assumes	GridGain	version	is	8.5.3
On	every	GridGain	server	node	copy	the	below	JARs	into	
$GRIDGAIN_HOME/libs/user directory.	Get	the	Kafka	JARs	from	the	Kafka	
Connect	workers:
• gridgain-kafka-connect-8.5.3.jar
• connect-api-2.0.0.jar
• kafka-clients-2.0.0.jar

Ignite	Connector	Deployment

1. Prepare	Connector	Package
2. Register	Connector	with	Kafka

Prepare	Ignite	Connector	Package

This	assumes	Ignite	version	is	2.6.
Create	a	direcotory containing	the	below	JARs	(find	JARs	in	the	
$IGNITE_HOME/libs sub-directories):

• ignite-kafka-connect-0.10.0.1.jar
• ignite-core-2.6.0.jar
• ignite-spring-2.6.0.jar
• cache-api-1.0.0.jar
• spring-aop-4.3.16.RELEASE.jar
• spring-beans-4.3.16.RELEASE.jar
• spring-context-4.3.16.RELEASE.jar
• spring-core-4.3.16.RELEASE.jar
• spring-expression-4.3.16.RELEASE.jar
• commons-logging-1.1.1.jar

Register	GridGain	Connector	with	Kafka

For	every	Kafka	Connect	Worker:
1. Copy	Ignite	Connector	package	directory	to	where	you	want	Kafka	

Connectors	to	be	located
for	example,	into		/opt/kafka/connect directory

2. Edit	Kafka	Connect	Worker	configuration	(kafka-connect-
standalone.properties or	kafka-connect-distributed.properties)	to	
register	the	connector	on	the	plugin	path:
plugin.path=/opt/kafka/connect/ignite-kafka-connect

Monitoring:	GridGain	Connector

Well	defined	Health	Model:
• Numeric	Event	ID	uniquely	identifies	specific	problem
• Event	severity
• Problem	description	and	recovery	action	is	available	at	
https://docs.gridgain.com/docs/certified-kafka-connector-monitoring

Configure	your	monitoring	system	to	detect	event	ID	in	the	logs	and	may	be	
run	automated	recovery	as	defined	in	the	Health	Model

• Sample	structured	log	entry	(#	used	as	a	delimiter):
09-10-2018 19:57:35 # ERROR # 15000 # Spring XML configuration
path is invalid: /invalid/path/ignite.xml

Monitoring:	Ignite	Connector

No	Health	Model	is	defined.
1. Run	negative	tests
2. Check	Kafka	and	Ignite	logs	output
3. Configure	your	monitoring	system	to	detect	corresponding	text	

patterns	in	the	logs

Integration	Examples
Propagating	RDBMS	updates	into	GridGain

Propagating	RDBMS	updates	into	GridGain

Ignite/GridGain	has	a	3rd Party	Persistence	feature	(Cache	Store)	that	
allows:
• Propagating	cache	changes	to	external	storage	like	RDBMS
• Automatically	copying	data	from	external	storage	to	Ignite	upon	accessing	
data	missed	in	Ignite

What	if	you	want	to	propagate	external	storage	change	to	Ignite	at	the	
moment	of	the	change?	- 3rd Party	Persistence	cannot	do	that!

Propagating	RDBMS	updates	into	GridGain

Use	Kafka	to	achieve	that	without	writing	single	line	of	code!

Assumptions

• For	simplicity	we	will	run	everything	on	the	same	host
• In	distributed	mode	GridGain	nodes,	Kafka	Connect	workers	and	Kafka	
brokers	are	running	on	different	hosts

• GridGain	8.5.3	cluster	with	GRIDGAIN_HOME	variable	set	on	the	
nodes
• Kafka	2.0	cluster	with	KAFKA_HOME	variable	set	on	all	brokers

1.	Run	DB	Server

We	will	use	H2	Database	in	this	demo.
We	will	use	/tmp/gridgain-h2-connect as	a	work	directory.
• Download	H2	and	set	H2_HOME	environment	variable.
• Run	H2	Server:
java -cp $H2_HOME/bin/h2*.jar org.h2.tools.Server -webPort 18082 -tcpPort 19092

TCP server running at tcp://172.25.4.74:19092 (only local connections)

PG server running at pg://172.25.4.74:5435 (only local connections)

Web Console server running at http://172.25.4.74:18082 (only local connections)

• In	the	opened	H2	Web	Console	specify	
JDBC	URL:
jdbc:h2:/tmp/gridgain-h2-
connect/marketdata

• Press	Connect

2.	Create	DB	Tables	and	Add	Some	Data

In	H2	Web	Console	Execute:
• CREATE TABLE IF NOT EXISTS QUOTES (id
int, date_time timestamp, price
double, PRIMARY KEY (id));

• CREATE TABLE IF NOT EXISTS TRADES (id
int, symbol varchar, PRIMARY KEY
(id));

• INSERT INTO TRADES (id, symbol) VALUES
(1, 'IBM');

• INSERT INTO QUOTES (id, date_time,
price) VALUES (1, CURRENT_TIMESTAMP(),
1.0);

3.	Start	GridGain	Cluster	(Single-node)

$GRIDGAIN_HOME/bin/ignite.sh /tmp/gridgain-h2-connect/ignite-server.xml
[15:41:15] Ignite node started OK (id=b9963f9a)

[15:41:15] Topology snapshot [ver=1, servers=1, clients=0, CPUs=8, offheap=3.2GB, heap=1.0GB]

[15:41:15] ^-- Node [id=B9963F9A-8F1E-4177-9743-F129414EB133, clusterState=ACTIVE]

<bean	id="ignite.cfg"	class="org.apache.ignite.configuration.IgniteConfiguration">
<property	name="discoverySpi">
<bean	class="org.apache.ignite.spi.discovery.tcp.TcpDiscoverySpi">
<property	name="ipFinder">
<bean	class="org.apache.ignite.spi.discovery.tcp.ipfinder.vm.TcpDiscoveryVmIpFinder">
<property	name="addresses">
<list>
<value>127.0.0.1:47500</value>

</list>
</property>

</bean>
</property>

</bean>
</property>

</bean>

4.	Deploy	Source	and	Sink	Connectors

• Download	Confluent	JDBC	Connector	package	from	
https://www.confluent.io/connector/kafka-connect-jdbc/
• Unzip	Confluent	JDBC	Connector	package	into	/tmp/gridgain-h2-
connect/confluentinc-kafka-connect-jdbc

• Copy	GridGain	Connector	package	from	$GRIDGAIN_HOME/integration/gridgain-
kafka-connect into	/tmp/gridgain-h2-connect/gridgain-kafka-connect
• Copy	kafka-connect-standalone.properties Kafka	worker	configuration	file	from	
$KAFKA_HOME/config into	/tmp/gridgain-h2-connect and	set	the	plugin	path	
property:

plugin.path=/tmp/gridgain-h2-connect/confluentinc-kafka-
connect-jdbc-5.1.0-SNAPSHOT,/tmp/gridgain-h2-
connect/gridgain-gridgain-kafka-connect-8.7.0-SNAPSHOT

5.	Start	Kafka	Cluster	(Single-broker)
• Configure	Zookeeper	with	/tmp/gridgain-h2-connect/zookeeper.properties:
dataDir=/tmp/gridgain-h2-connect/zookeeper
clientPort=2181

• Start	Zookeeper:
$KAFKA_HOME/bin/zookeeper-server-start.sh /tmp/gridgain-h2-
connect/zookeeper.properties

• Configure	Kafka	broker:	copy	default	$KAFKA_HOME/config/server.properties to	
/tmp/gridgain-h2-connect/kafka-server.properties customize	it:

broker.id=0
listeners=PLAINTEXT://:9092
log.dirs=/tmp/gridgain-h2-connect/kafka-logs
zookeeper.connect=localhost:2181

• Start	Kafka	broker:
$KAFKA_HOME/bin/kafka-server-start.sh /tmp/gridgain-h2-
connect/kafka-server.properties
[2018-10-10 16:11:21,573] INFO Kafka version : 2.0.0
(org.apache.kafka.common.utils.AppInfoParser)

[2018-10-10 16:11:21,573] INFO Kafka commitId : 3402a8361b734732
(org.apache.kafka.common.utils.AppInfoParser)

[2018-10-10 16:11:21,574] INFO [KafkaServer id=0] started (kafka.server.KafkaServer)

6.	Configure	Source	JDBC	Connector

/tmp/gridgain-h2-connect/kafka-connect-h2-source.properties:

name=h2-marketdata-source
connector.class=io.confluent.connect.jdbc.JdbcSourceConnector
tasks.max=10

connection.url=jdbc:h2:tcp://localhost:19092//tmp/gridgain-h2-connect/marketdata
table.whitelist=quotes,trades

mode=timestamp+incrementing
timestamp.column.name=date_time
incrementing.column.name=id

topic.prefix=h2-

7.	Configure	Sink	GridGain	Connector

/tmp/gridgain-h2-connect/kafka-connect-gridgain-sink.properties:

name=gridgain-marketdata-sink
topics=h2-QUOTES,h2-TRADES
tasks.max=10
connector.class=org.gridgain.kafka.sink.IgniteSinkConnector

igniteCfg=/tmp/gridgain-h2-connect/ignite-client-sink.xml
topicPrefix=h2-

8.	Start	Kafka-Connect	Cluster	(Single-worker)

$KAFKA_HOME/bin/connect-standalone.sh \

/tmp/gridgain-h2-connect/kafka-connect-standalone.properties \

/tmp/gridgain-h2-connect/kafka-connect-h2-source.properties \

/tmp/gridgain-h2-connect/kafka-connect-gridgain-sink.properties

[2018-10-10 16:52:21,618] INFO Created connector h2-marketdata-source
(org.apache.kafka.connect.cli.ConnectStandalone:104)

[2018-10-10 16:52:22,254] INFO Created connector gridgain-marketdata-sink
(org.apache.kafka.connect.cli.ConnectStandalone:104)

9.	See	Caches	Created	in	GridGain

Open	GridGain	Web	Console	Monitoring	Dashboard	at	
https://console.gridgain.com/monitoring/dashboard and	see	GridGain	
Sink	Connector	created	QUOTES	and	TRADES	caches:

10.	See	Initial	H2	Data	in	GridGain

Open	GridGain	Web	Console	Queries	page	and	run	Scan	queries	for	
QUOTES	and	TRADES:

11.	Update	H2	Tables

In	H2	Web	Console	Execute:
• INSERT INTO TRADES (id, symbol) VALUES
(2, ‘INTL');

• INSERT INTO QUOTES (id, date_time,
price) VALUES (2, CURRENT_TIMESTAMP(),
2.0);

12.	See	Realtime	H2	Data	in	GridGain

Open	GridGain	Web	Console	Queries	page	and	run	Scan	queries	for	
QUOTES	and	TRADES:

Performance	and	scalability	
tuning

Disable	Processing	of	Updates

For	performance	reasons,	Sink	Connector	does	not	support	existing	
cache	entry	update	by	default.	
Set shallProcessUpdates configuration	setting	to true to	make	the	Sink	
Connector	update	existing	entries.

Disable	Dynamic	Schema

Source	connector	caches	key	and	values	schemas.	
• The	schemas	are	created	as	the	first	cache	entry	is	pulled	and	re-used	for	all	
subsequent	entries.	

This	works	only	if	the	schemas	never	change.
• Set isSchemaDynamic to true to	support	schema	changes.

Consider	Disabling	Schema

Source	Connector	does	not	generate	schemas	
if isSchemaless configuration	setting	is true.
Disabling	schemas	significantly	improves	performance.

Carefully	Choose	Failover	Policy

• Can	allow	losing	data?	Use	None.
• Caches	are	small	(e.g.	reference	data	caches)?	Use	Full	Snapshot.
• Otherwise	use	Backlog.

Plan	Kafka	Connect	Backlog	Capacity

Only	Backlog failover	policy	supports	both	“at	least	once”	and	“exactly	
once”	delivery	guarantee.
GridGain	Source	Connector	creates	Backlog	in	the	“kafka-connect”	
memory	region,	which	requires	capacity	planning	to	avoid	losing	data	
by	eviction	(unless	persistence	is	enabled).
Consider	the	worst	case	scenario:
• Maximum	Kafka	Connector	worker	downtime	allowed	in	your	system
• Peak	traffic

Multiple	peak	traffic	by	max	downtime	to	estimate	“kafka-connect”	
data	region	size.

Q	&	A
Thank	you!

