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Stores your data in a distributed way

JCache API

IgniteCache

Thin clients SQL

• Trade-off: data safety / consistency vs. performance

• Decision should depend on the use case

– Caching for external storage

– Reliable (K, V) storage

– Business-critical transactions processing

• Flexible Ignite configuration allows to adapt for every case
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• cacheConfiguration.setCacheMode(mode);

– PARTITIONED

• Data is partitioned

• Number of copies for every partition can be specified

– REPLICATED

• Every node keeps whole data set
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• By default, every partition is present in one copy
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• cacheConfiguration.setBackups(1);

primary 

partition

backup 

partition
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put in partitioned 

cache

• Data is stored in a partition

• Partition may have several copies

• Writes are fast

• Reads may require network hop

• Storage space multiplier = [backups + 1]

put in replicated 

cache

• Data is stored on all nodes

• Writes are heavy

• Reads are instant

• Storage space multiplier = [nodes]
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• Data replication modes

• Data sync guarantees

• Data consistency

• Data storage

• In-memory / disk

• Capacity

• Disk-based consistency

The most important configuration settings
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that update is completed
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cache.put(1, “data”); update

request

• User thread is unlocked

when system assumes

that update is completed

• When does it happen?

– This is configurable as well
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• cacheConfiguration.setWriteSynchronizationMode(mode);
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• cacheConfiguration.setWriteSynchronizationMode(mode);

• PRIMARY_SYNC

– Client will wait for data update completion on primary node

• FULL_SYNC

– Client will wait for data update completion on all participating nodes

• FULL_ASYNC

– Client doesn’t wait for data update completion
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cache.put(1, “data”);

• FULL_ASYNC 

thread is unlocked on stage 1

• PRIMARY_SYNC 

thread is locked

• FULL_SYNC 

thread is locked

update

request

Stage 1
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cache.put(1, “data”);

1 == “data” ✔

update

request

Stage 2

• FULL_ASYNC 

thread is unlocked on stage 1

• PRIMARY_SYNC 

thread is locked

• FULL_SYNC 

thread is locked
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cache.put(1, “data”);

update

response
1 == “data” ✔

update

request

Stage 3

• FULL_ASYNC 

thread is unlocked on stage 1

• PRIMARY_SYNC 

thread is unlocked on stage 3

• FULL_SYNC 

thread is locked
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cache.put(1, “data”);

1 == “data” ✔

update

request

backup

update

request

update

response
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cache.put(1, “data”);

1 == “data” ✔

update

request

1 == “data” ✔

backup

update

request

update

response

Stage 5

• FULL_ASYNC 

thread is unlocked on stage 1

• PRIMARY_SYNC 

thread is unlocked on stage 3

• FULL_SYNC 
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cache.put(1, “data”);

1 == “data” ✔

update

request

backup

update

response

1 == “data” ✔

backup

update

request

update

response

Stage 6

• FULL_ASYNC 

thread is unlocked on stage 1

• PRIMARY_SYNC 

thread is unlocked on stage 3

• FULL_SYNC 

thread is unlocked on stage 6
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• cacheConfiguration.setReadFromBackup(true / false);



2020 © GridGain Systems

Data Sync Guarantees

39

• cacheConfiguration.setReadFromBackup(true / false);

– Read operations are balanced between all partition copies



2020 © GridGain Systems

Data Sync Guarantees

40

• cacheConfiguration.setReadFromBackup(true / false);

– Read operations are balanced between all partition copies

– On REPLICATED caches reads are performed locally
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cache.put(1, “data”);

1 == “data” ✔

update

request

1 == “data” ✔backup

update

response

backup

update

request

update

response

Why FULL_SYNC may be required for readFromBackup=true
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backup
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• Data replication modes

• Data sync guarantees

• Data consistency

• Data storage

• In-memory / disk

• Capacity

• Disk-based consistency

The most important configuration settings
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• cacheConfiguration.setAtomicityMode(mode);
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cache.putAll(batch);
org.apache.ignite.cache.CachePartialUpdateException: 
Failed to update keys (retry update if possible).: [7]

– Higher performance
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• cacheConfiguration.setAtomicityMode(mode);

• ATOMIC

– Only entry-level atomicity is guaranteed

cache.putAll(batch);
org.apache.ignite.cache.CachePartialUpdateException: 
Failed to update keys (retry update if possible).: [7]

– Higher performance

• TRANSACTIONAL

– ACID guarantees

– Cross-partition, cross-cache

– Failover-safe (still ACID if some of participant nodes fail)
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Use case 1: atomic batch update
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Use case 2: exclusive update
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Use case 3: safe money transfer
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OPTIMISTIC /

READ_COMMITTED*

PESSIMISTIC / 

READ_COMMITTED

PESSIMISTIC / 

REPEATABLE_READ

OPTIMISTIC / 

SERIALIZABLE

ACID guarantees ✔ ✔ ✔ ✔

Locks on write

(exclusive update is possible)

x ✔ ✔ ✔ (optimistic lock)

Locks on read

(money transfer is possible)

x x ✔ ✔ (optimistic lock)

Can be forcibly rolled back on concurrent update x x x ✔ (if optimistic 

locking fails)

Automatic resolution of deadlocks caused by 

application

x x x ✔

* Batch putAll also has OPTIMISTIC / READ_COMMITTED guarantees
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• ATOMIC

– Choose if performance is crucial

• TRANSACTIONAL

– Must be chosen if stronger than entry-level consistency may be needed
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• Data replication modes

• Data sync guarantees

• Data consistency

• Data storage

• In-memory / disk

• Capacity

• Disk-based consistency

The most important configuration settings
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• In-memory caches

– Data are stored in preconfigured offheap region

– Overflow causes IgniteOutOfMemoryException unless eviction mode is set
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• In-memory caches

– Data are stored in preconfigured offheap region

– Overflow causes IgniteOutOfMemoryException unless eviction mode is set

• Persistent caches

– Data are stored in preconfigured offheap region and are synced with disk

– Overflow causes replacement of “cold” pages from offheap to disk
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In-memory region for hot data, persistent region for cold data

new DataStorageConfiguration()

.setDefaultDataRegionConfiguration(

new DataRegionConfiguration()
.setMaxSize(45L * 1024 * 1024 * 1024)
.setPersistenceEnabled(true))

.setDataRegionConfigurations(
new DataRegionConfiguration()

.setName("hot")

.setMaxSize(15L * 1024 * 1024 * 1024));
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• cacheCcfg.setDataRegionName(“hot”);
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Crash recovery in persistent mode is guaranteed due to keeping WAL

• dataStorageCfg.setWalMode(mode);
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Crash recovery in persistent mode is guaranteed due to keeping WAL

• dataStorageCfg.setWalMode(mode);

• BACKGROUND

– Updates are logged to WAL file asynchronously

• LOG_ONLY

– Updates are logged to WAL file synchronously

• FSYNC

– Updates are logged to WAL file and synced with storage device 

synchronously via fsync syscall
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BACKGROUND LOG_ONLY (default) FSYNC

Ignite process crash x ✔ ✔

Power loss / OS crash x x ✔
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BACKGROUND LOG_ONLY (default) FSYNC

Ignite process crash x ✔ ✔

Power loss / OS crash x x ✔

LOG_ONLY is enough for keeping data safe in practice

If one node crashes, consistency will be recovered through rebalance
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• Data replication modes PARTITIONED, REPLICATED, setBackups

• Data sync guarantees PRIMARY_SYNC, FULL_SYNC, readFromBackup

• Data consistency ATOMIC, TRANSACTIONAL

• Data storage

• In-memory / disk Baseline Topology

• Capacity DataStorageConfiguration

• Disk-based consistency WAL mode
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Thanks for your attention!

Questions?

e-mail: irakov@gridgain.com

public list for discussions: user@ignite.apache.org


