
Architects' Guide for Apache Ignite 
ACID Transactions and Consistency

Ivan Rakov

April 29, 2020

2020 © GridGain Systems



2020 © GridGain Systems

April 29, 2020

Ivan Rakov

● Work at GridGain Systems

○ Leading data consistency dev team

● Apache Ignite Committer



2020 © GridGain Systems3



2020 © GridGain Systems4

Stores your data in a distributed way

JCache API

IgniteCache

Thin clients SQL



2020 © GridGain Systems5

Stores your data in a distributed way

JCache API

IgniteCache

Thin clients SQL

• Trade-off: data safety / consistency vs. performance



2020 © GridGain Systems6

Stores your data in a distributed way

JCache API

IgniteCache

Thin clients SQL

• Trade-off: data safety / consistency vs. performance

• Decision should depend on the use case

– Caching for external storage

– Reliable (K, V) storage

– Business-critical transactions processing



2020 © GridGain Systems7

Stores your data in a distributed way

JCache API

IgniteCache

Thin clients SQL

• Trade-off: data safety / consistency vs. performance

• Decision should depend on the use case

– Caching for external storage

– Reliable (K, V) storage

– Business-critical transactions processing

• Flexible Ignite configuration allows to adapt for every case



2020 © GridGain Systems

Agenda

8

The most important configuration settings

• Data replication modes PARTITIONED, REPLICATED



2020 © GridGain Systems

Agenda

9

• Data replication modes PARTITIONED, REPLICATED

• Data sync guarantees

The most important configuration settings



2020 © GridGain Systems

Agenda

10

• Data replication modes PARTITIONED, REPLICATED

• Data sync guarantees

• Data consistency

The most important configuration settings



2020 © GridGain Systems

Agenda

11

• Data replication modes PARTITIONED, REPLICATED

• Data sync guarantees

• Data consistency

• Data storage

• In-memory / disk

• Capacity

• Disk-based consistency

The most important configuration settings



2020 © GridGain Systems

Agenda

12

• Data replication modes

• Data sync guarantees

• Data consistency

• Data storage

• In-memory / disk

• Capacity

• Disk-based consistency

The most important configuration settings



2020 © GridGain Systems

Data Replication

13

• cacheConfiguration.setCacheMode(mode);



2020 © GridGain Systems

Data Replication

14

• cacheConfiguration.setCacheMode(mode);

– PARTITIONED

• Data is partitioned

• Number of copies for every partition can be specified



2020 © GridGain Systems

Data Replication

15

• cacheConfiguration.setCacheMode(mode);

– PARTITIONED

• Data is partitioned

• Number of copies for every partition can be specified

– REPLICATED

• Every node keeps whole data set



2020 © GridGain Systems

Partitioned Cache

16

• By default, every partition is present in one copy



2020 © GridGain Systems

Partitioned Cache

17

• cacheConfiguration.setBackups(1);

primary 

partition

backup 

partition



2020 © GridGain Systems

Partitioned vs Replicated Cache

18

put in partitioned 

cache



2020 © GridGain Systems

Partitioned vs Replicated Cache

19

put in partitioned 

cache



2020 © GridGain Systems

Partitioned vs Replicated Cache

20

put in partitioned 

cache

• Data is stored in a partition

• Partition may have several copies

• Writes are fast

• Reads may require network hop

• Storage space multiplier = [backups + 1]



2020 © GridGain Systems

Partitioned vs Replicated Cache

21

put in partitioned 

cache

put in replicated 

cache

• Data is stored in a partition

• Partition may have several copies

• Writes are fast

• Reads may require network hop

• Storage space multiplier = [backups + 1]



2020 © GridGain Systems

Partitioned vs Replicated Cache

22

put in partitioned 

cache

• Data is stored in a partition

• Partition may have several copies

• Writes are fast

• Reads may require network hop

• Storage space multiplier = [backups + 1]

put in replicated 

cache



2020 © GridGain Systems

Partitioned vs Replicated Cache

23

put in partitioned 

cache

• Data is stored in a partition

• Partition may have several copies

• Writes are fast

• Reads may require network hop

• Storage space multiplier = [backups + 1]

put in replicated 

cache

• Data is stored on all nodes

• Writes are heavy

• Reads are instant

• Storage space multiplier = [nodes]



2020 © GridGain Systems

Agenda

24

• Data replication modes

• Data sync guarantees

• Data consistency

• Data storage

• In-memory / disk

• Capacity

• Disk-based consistency

The most important configuration settings



2020 © GridGain Systems

Data Sync Guarantees

25

cache.put(1, “data”); update

request

• User thread is unlocked

when system assumes

that update is completed



2020 © GridGain Systems

Data Sync Guarantees

26

cache.put(1, “data”); update

request

• User thread is unlocked

when system assumes

that update is completed

• When does it happen?

– This is configurable as well



2020 © GridGain Systems

Data Sync Guarantees

27

• cacheConfiguration.setWriteSynchronizationMode(mode);



2020 © GridGain Systems

Data Sync Guarantees

28

• cacheConfiguration.setWriteSynchronizationMode(mode);

• PRIMARY_SYNC

– Client will wait for data update completion on primary node



2020 © GridGain Systems

Data Sync Guarantees

29

• cacheConfiguration.setWriteSynchronizationMode(mode);

• PRIMARY_SYNC

– Client will wait for data update completion on primary node

• FULL_SYNC

– Client will wait for data update completion on all participating nodes



2020 © GridGain Systems

Data Sync Guarantees

30

• cacheConfiguration.setWriteSynchronizationMode(mode);

• PRIMARY_SYNC

– Client will wait for data update completion on primary node

• FULL_SYNC

– Client will wait for data update completion on all participating nodes

• FULL_ASYNC

– Client doesn’t wait for data update completion



2020 © GridGain Systems

Data Sync Guarantees

31

cache.put(1, “data”); update

request

Stage 1



2020 © GridGain Systems

Data Sync Guarantees

32

cache.put(1, “data”);

• FULL_ASYNC 

thread is unlocked on stage 1

• PRIMARY_SYNC 

thread is locked

• FULL_SYNC 

thread is locked

update

request

Stage 1



2020 © GridGain Systems

Data Sync Guarantees

33

cache.put(1, “data”);

1 == “data” ✔

update

request

Stage 2

• FULL_ASYNC 

thread is unlocked on stage 1

• PRIMARY_SYNC 

thread is locked

• FULL_SYNC 

thread is locked



2020 © GridGain Systems

Data Sync Guarantees

34

cache.put(1, “data”);

update

response
1 == “data” ✔

update

request

Stage 3

• FULL_ASYNC 

thread is unlocked on stage 1

• PRIMARY_SYNC 

thread is unlocked on stage 3

• FULL_SYNC 

thread is locked



2020 © GridGain Systems

Data Sync Guarantees

35

cache.put(1, “data”);

1 == “data” ✔

update

request

backup

update

request

update

response

Stage 4

• FULL_ASYNC 

thread is unlocked on stage 1

• PRIMARY_SYNC 

thread is unlocked on stage 3

• FULL_SYNC 

thread is locked



2020 © GridGain Systems

Data Sync Guarantees

36

cache.put(1, “data”);

1 == “data” ✔

update

request

1 == “data” ✔

backup

update

request

update

response

Stage 5

• FULL_ASYNC 

thread is unlocked on stage 1

• PRIMARY_SYNC 

thread is unlocked on stage 3

• FULL_SYNC 

thread is locked



2020 © GridGain Systems

Data Sync Guarantees

37

cache.put(1, “data”);

1 == “data” ✔

update

request

backup

update

response

1 == “data” ✔

backup

update

request

update

response

Stage 6

• FULL_ASYNC 

thread is unlocked on stage 1

• PRIMARY_SYNC 

thread is unlocked on stage 3

• FULL_SYNC 

thread is unlocked on stage 6



2020 © GridGain Systems

Data Sync Guarantees

38

• cacheConfiguration.setReadFromBackup(true / false);



2020 © GridGain Systems

Data Sync Guarantees

39

• cacheConfiguration.setReadFromBackup(true / false);

– Read operations are balanced between all partition copies



2020 © GridGain Systems

Data Sync Guarantees

40

• cacheConfiguration.setReadFromBackup(true / false);

– Read operations are balanced between all partition copies

– On REPLICATED caches reads are performed locally



2020 © GridGain Systems41

cache.put(1, “data”);

1 == “data” ✔

update

request

1 == “data” ✔backup

update

response

backup

update

request

update

response

Why FULL_SYNC may be required for readFromBackup=true



2020 © GridGain Systems42

cache.put(1, “data”);

1 == “data” ✔

update

request

next pipeline 

step

1 == “data” ✔

backup

update

request

backup

update

response

update

response

Why FULL_SYNC may be required for readFromBackup=true



2020 © GridGain Systems43

cache.put(1, “data”);

1 == “data” ✔

update

request

next pipeline 

step

next pipeline 

step

1 == “data” ✔

backup

update

request

backup

update

response

update

response

Why FULL_SYNC may be required for readFromBackup=true



2020 © GridGain Systems

Agenda

44

• Data replication modes

• Data sync guarantees

• Data consistency

• Data storage

• In-memory / disk

• Capacity

• Disk-based consistency

The most important configuration settings



2020 © GridGain Systems

Data Consistency

45

• cacheConfiguration.setAtomicityMode(mode);



2020 © GridGain Systems

Data Consistency

46

• cacheConfiguration.setAtomicityMode(mode);

• ATOMIC

– Only entry-level atomicity is guaranteed

cache.putAll(batch);
org.apache.ignite.cache.CachePartialUpdateException: 
Failed to update keys (retry update if possible).: [7]

– Higher performance



2020 © GridGain Systems

Data Consistency

47

• cacheConfiguration.setAtomicityMode(mode);

• ATOMIC

– Only entry-level atomicity is guaranteed

cache.putAll(batch);
org.apache.ignite.cache.CachePartialUpdateException: 
Failed to update keys (retry update if possible).: [7]

– Higher performance

• TRANSACTIONAL

– ACID guarantees

– Cross-partition, cross-cache

– Failover-safe (still ACID if some of participant nodes fail)



2020 © GridGain Systems

Transactional Caches

48

Use case 1: atomic batch update



2020 © GridGain Systems

Transactional Caches

49

Use case 2: exclusive update



2020 © GridGain Systems

Transactional Caches

50

Use case 3: safe money transfer



2020 © GridGain Systems

Transactional Caches

51

OPTIMISTIC /

READ_COMMITTED*

PESSIMISTIC / 

READ_COMMITTED

PESSIMISTIC / 

REPEATABLE_READ

OPTIMISTIC / 

SERIALIZABLE

ACID guarantees ✔ ✔ ✔ ✔

Locks on write

(exclusive update is possible)

x ✔ ✔ ✔ (optimistic lock)

Locks on read

(money transfer is possible)

x x ✔ ✔ (optimistic lock)

Can be forcibly rolled back on concurrent update x x x ✔ (if optimistic 

locking fails)

Automatic resolution of deadlocks caused by 

application

x x x ✔

* Batch putAll also has OPTIMISTIC / READ_COMMITTED guarantees



2020 © GridGain Systems

Transactional Caches: two-phase commit under the hood

52



2020 © GridGain Systems

Transactional Caches: two-phase commit under the hood

53



2020 © GridGain Systems

Transactions: to be continued!

54



2020 © GridGain Systems

ATOMIC vs TRANSACTIONAL: what to choose

55

• ATOMIC

– Choose if performance is crucial

• TRANSACTIONAL

– Must be chosen if stronger than entry-level consistency may be needed



2020 © GridGain Systems

Agenda

56

• Data replication modes

• Data sync guarantees

• Data consistency

• Data storage

• In-memory / disk

• Capacity

• Disk-based consistency

The most important configuration settings



2020 © GridGain Systems

Apache Ignite: multi-tier storage

57



2020 © GridGain Systems

Apache Ignite: multi-tier storage

58

• In-memory caches

– Data are stored in preconfigured offheap region

– Overflow causes IgniteOutOfMemoryException unless eviction mode is set



2020 © GridGain Systems

Apache Ignite: multi-tier storage

59

• In-memory caches

– Data are stored in preconfigured offheap region

– Overflow causes IgniteOutOfMemoryException unless eviction mode is set

• Persistent caches

– Data are stored in preconfigured offheap region and are synced with disk

– Overflow causes replacement of “cold” pages from offheap to disk



2020 © GridGain Systems

Use case: hot and cold data

60

In-memory region for hot data, persistent region for cold data

new DataStorageConfiguration()

.setDefaultDataRegionConfiguration(

new DataRegionConfiguration()
.setMaxSize(45L * 1024 * 1024 * 1024)
.setPersistenceEnabled(true))

.setDataRegionConfigurations(
new DataRegionConfiguration()

.setName("hot")

.setMaxSize(15L * 1024 * 1024 * 1024));



2020 © GridGain Systems

Use case: hot and cold data

61

• cacheCcfg.setDataRegionName(“hot”);



2020 © GridGain Systems

Ignite Persistence: high-level architecture

62



2020 © GridGain Systems

Disk-based consistency

63

Crash recovery in persistent mode is guaranteed due to keeping WAL

• dataStorageCfg.setWalMode(mode);



2020 © GridGain Systems

Disk-based consistency

64

Crash recovery in persistent mode is guaranteed due to keeping WAL

• dataStorageCfg.setWalMode(mode);

• BACKGROUND

– Updates are logged to WAL file asynchronously



2020 © GridGain Systems

Disk-based consistency

65

Crash recovery in persistent mode is guaranteed due to keeping WAL

• dataStorageCfg.setWalMode(mode);

• BACKGROUND

– Updates are logged to WAL file asynchronously

• LOG_ONLY

– Updates are logged to WAL file synchronously



2020 © GridGain Systems

Disk-based consistency

66

Crash recovery in persistent mode is guaranteed due to keeping WAL

• dataStorageCfg.setWalMode(mode);

• BACKGROUND

– Updates are logged to WAL file asynchronously

• LOG_ONLY

– Updates are logged to WAL file synchronously

• FSYNC

– Updates are logged to WAL file and synced with storage device 

synchronously via fsync syscall



2020 © GridGain Systems

Disk-based consistency: protection from lost updates

67

BACKGROUND LOG_ONLY (default) FSYNC

Ignite process crash x ✔ ✔

Power loss / OS crash x x ✔



2020 © GridGain Systems

Disk-based consistency: protection from lost updates

68

BACKGROUND LOG_ONLY (default) FSYNC

Ignite process crash x ✔ ✔

Power loss / OS crash x x ✔

LOG_ONLY is enough for keeping data safe in practice

If one node crashes, consistency will be recovered through rebalance



2020 © GridGain Systems

Summary: keywords

69

• Data replication modes PARTITIONED, REPLICATED, setBackups

• Data sync guarantees PRIMARY_SYNC, FULL_SYNC, readFromBackup

• Data consistency ATOMIC, TRANSACTIONAL

• Data storage

• In-memory / disk Baseline Topology

• Capacity DataStorageConfiguration

• Disk-based consistency WAL mode



2020 © GridGain Systems70

Thanks for your attention!

Questions?

e-mail: irakov@gridgain.com

public list for discussions: user@ignite.apache.org


