
Architect’s Guide for Continuous
Machine Learning Platforms
With Apache Ignite 2.8

Ken Cottrell
Solution Architect
ken.cottrell@gridgain.com

2019 © GridGain Systems

Agenda

1

Architect’s Guide for Continuous Machine Learning With
Apache Ignite 2.8
§ Introduction to ML/DL Architecture Patterns: Continuous Machine Learning

at Scale
§ Apache Ignite 2.8 ML/DL Capabilities and New Features
§ Apache Ignite 2.8 ML/DL Code Examples / Demos
§ Q & A

2019 © GridGain Systems

Apache Ignite 2.8

2

Over 1,900 upgrades and fixes that enhance almost all platform
components
§ Production Support Improvements to better support high 24x7 workloads

§ Persistence compaction, Baseline topology autoadjustment
§ Support for Next-Generation Monitoring, User-defined Alerts, and Event Tracing

§ APIs for JMX, SQL, OpenCensus
§ Take a look at the new Gridgain Control Center product: https://control.gridgain.com/

§ Machine Learning Enhancements
§ A new pipelining API gives you added ML workflow flexibility
§ Additional ensemble methods, which allows you to combine ML training algorithms into more

agile training workflows
§ Model parsers to leverage outputs from such leading ML technologies as Apache Spark and

XGBoost models

https://control.gridgain.com/
https://www.google.com/url?q=https://apacheignite.readme.io/docs/evaluation&sa=D&source=calendar&ust=1593620680080000&usg=AOvVaw0G4C8wq_eCoFerNXRRnMEk
https://www.google.com/url?q=https://apacheignite.readme.io/docs/ensemble-methods&sa=D&source=calendar&ust=1593620680080000&usg=AOvVaw0zsuZF4HLGuJaVCDnVbx56
https://www.google.com/url?q=https://apacheignite.readme.io/docs/model-importing&sa=D&source=calendar&ust=1593620680080000&usg=AOvVaw2ZY4omy2IcYg4KisVs68aE

2019 © GridGain Systems

 -

 50,000

 100,000

 150,000

 200,000

Ap
r-1

4
Ju

n-
14

Au
g-

14
O

ct
-1

4
D

ec
-1

4
Fe

b-
15

Ap
r-1

5
Ju

n-
15

Au
g-

15
O

ct
-1

5
D

ec
-1

5
Fe

b-
16

Ap
r-1

6
Ju

n-
16

Au
g-

16
O

ct
-1

6
D

ec
-1

6
Fe

b-
17

Ap
r-1

7
Ju

n-
17

Au
g-

17
O

ct
-1

7
D

ec
-1

7
Fe

b-
18

Ap
r-1

8
Ju

n-
18

Au
g-

18
O

ct
-1

8
D

ec
-1

8

Apache Ignite Is a Top 5 Apache Project

Est. 15M today, Apache site
and Docker siteTop 5 Dev Mailing Lists

1.

2.

3.

4.

5.

Top 5 User Mailing Lists

1.

2.

3.

4.

5.

Monthly Ignite/GridGain Downloads

From January 1, 2019 Apache Software Foundation Blog Post:
“Apache in 2018 – By The Digits”

A Top 5 Apache Software Foundation Project

2019 © GridGain Systems

Logistics & Transportation

Apache Ignite Users

IoT

AdTech/Media/Entertainment

Pharma & Healthcare

Reliance

Financial Services

FinTech

Software/Cloud

Telecom & Mobile

IoT

AdTech / Media / Entertainment

Logistics & Transportation

eCommerce & Retail

Pharma & Healthcare

2019 © GridGain Systems

Apache Ignite In-Memory Computing Platform

Mainframe NoSQL HadoopIgnite Persistence

Persistent Layer

RDBMS

Machine and Deep Learning

EventsStreamingMessagingTransactionsSQLKey-Value

Service GridCompute Grid

Application Layer

Web SaaS SocialMobile IoT

R
ol

lin
g

U
pg

ra
de

s

Se
cu

rit
y

&
Au

di
tin

g

M
on

ito
rin

g
&

M
an

ag
em

en
t

Se
gm

en
ta

tio
n

Pr
ot

ec
tio

n

D
at

a
C

en
te

rR
ep

lic
at

io
n

N
et

w
or

k
Ba

ck
up

s

Fu
ll,

 In
cr

em
en

ta
l,

C
on

tin
uo

us
 B

ac
ku

ps

Po
in

t-i
n-

Ti
m

e
R

ec
ov

er
y

H
et

er
og

en
eo

us
 R

ec
ov

er
y

In-Memory Data Store

GridGain Enterprise FeaturesApache Ignite Features

2019 © GridGain Systems6

ML/DL Architectures that
deliver Continuous Machine
Learning at Scale

2019 © GridGain Systems

Continuous Machine Learning At Scale:
Both Real-time and Batch Data, Together

• New “model update” APIs let refine an
existing model on the fly with new data
samples

• Ignite ML is deeply integrated into Ignite
multi-tiered storage:
– Optional ETL and no data shuffling

during training
– (Re-)Train across petabytes of in-

memory and on-disk data
Online
Operational
Data (OLTP)

Predictive
Model
Trained
Deployed

2019 © GridGain Systems

Replicated,
Parallel jobs
§ Pre-Process
§ Vectorize
§ Train

Continuous Machine Learning At Scale:
Enabled with Partitioned Datasets

Ignite Node

P2 C D

Ignite Node

P1 C D
Application

P = Partition (Primary, and 1 Backup)
C = Partition Context
D = Partition Data
D* = Local ETL

Replicated,
Parallel jobs
§ Pre-Process
§ Vectorize
§ Train

Map Training

Reduce Training Results

2019 © GridGain Systems

Continuous ML at Scale:
Example Deployment Patterns

9

Operational
(OLTP)

Data

Extract &
Transform

Training
Process

Evaluation
Process

Predictive
Workflows

Predictions
Assessment

(ongoing)

New
Operational
(OLTP) Data

ReTraining
Process

APIs to DataOp, MLOps, AutoML

Building the Predictive
Model

Using the Deployed
Predictive Model

2019 © GridGain Systems

Batch training on large datasets
Latency constraint:
• Batch run
• Approx. 1 / Node count time reduction

Pattern: ML tasks performed where OLTP data
already resides
• Extract OLTP into ML dataset
• Preprocess into ML format
• Train w/ selected algorithms
• Evaluate for accuracy

Output:
• Trained ML predictive Model(s) collected in

client node(s)
• Select models using evaluation data and other

criteria
• Models can be saved and loaded back to other

clients

Deployment Pattern: Building Predictive Models

10

1

2 2 2

RDBMS or Ignite Native
Persistence

APIs to AutoML DataOps, MLOps, etc

3 3 332

Ignite
Cluster(s)

4
model

Co-Located in
same partitions
• OLTP data

(historical
and/or online)

• ML compute
tasks

2019 © GridGain Systems
RDBMS or Ignite Native Persistence

Ignite
Cluster(s)

ML
Predictive
Model
Services

Deployment Pattern: Using the Predictive Models
Real-Time predictions

Operational
Transactions
Cache for OLTP
(Puts/Gets/SQL)

Latency constraint:
• Per OLTP commit: Application needs to

get prediction first before performing
commit

Pattern:
• Predictive Model forward deployed

close to OLTP application for fast
response

• Options include: Same JVM, Same
Node, Same cluster

Outputs / results:
• OLTP writes performed in 1/N scale-

out
• OLTP writes include both Predictions +

Actuals for accuracy tracking

2

35

4 4 4 4

1

0
model

Co-Located in
same partitions
• OLTP updates
• ML accuracy

tracking

2019 © GridGain Systems
RDBMS or Ignite Native Persistence

Ignite
Cluster(s)

ML
Predictive
Model
Services

Deployment Pattern: Using the Predictive Models
“Near Real-Time” predictions

Operational
Transactions
Cache for OLTP
(Puts/Gets/SQL)

Latency constraint:
• Prediction doesn’t need to be sent back to

application client before write to cache;
predictions can be done in reasonable size
batches

• Workflow prioritization post commit: Claims
processing for example

Pattern:
• Predictive Model forward deployed close to

OLTP application
• Options include: Same JVM, Same Node,

Same cluster

Outputs / results:
• OLTP writes performed in 1/N scale-out
• OLTP writes include both Predictions +

Actuals for accuracy tracking at each node

2

3

5

4 4 4 4

1

0

model

Co-Located in
same partitions
• OLTP updates
• ML accuracy

tracking

6

2019 © GridGain Systems

Ignite
Clusters

ReST or Ignite
Service Grid

ML
Predictive Model
Service

Deployment Pattern: Using the Predictive Models
Shared Model as a service

Operational
Transactions
Cache for OLTP
(Puts/Gets/SQL)

Pattern:
• Replicated OLTP client nodes that share

Model service
• Predictive Model forward deployed

close to OLTP application, if you need
you need predicts prior to commits

• Wrap service for governance (security,
metering, routing / transformation)

Outputs / results:
• OLTP writes performed in 1/N scale-out
• OLTP writes include both Predictions +

Actuals for accuracy tracking

2

RDBMS or Ignite Native Persistence

1

3

5

4 4 4 4

model

Co-Located in
same partitions
• OLTP updates
• ML accuracy

tracking

2019 © GridGain Systems

Service Grid

ML
Predictive Model
Service

Deployment Pattern: Using the Predictive Models
Replicating the Model service

Operational
Transactions
Cache for OLTP
(Puts/Gets/SQL)

Latency constraint:
• Can supply prediction to application

prior to OLTP commit
Pattern:
• Predictive Model forward deployed but

now load-balanced
• Identical Model is replicated

(Deserialized or Parsed) into each
Model node.

• Model needs to be loaded from one
source so identical in each instance

Outputs / results:
• OLTP writes performed in 1/N scale-out
• OLTP writes include both Predictions +

Actuals for accuracy tracking

2

RDBMS or Ignite Native Persistence

1

3

0 5

4 4 4 4

Deserialize
Ignite Model or Parse

Spark/XGB model

model

model

model

Co-Located in same
partitions
• OLTP updates
• ML accuracy tracking

2019 © GridGain Systems

Ignite
Cluster(s)

Deployment Pattern: Using the Predictive Models
Batch process

15

Latency constraints
• orchestrating repeat batch runs: no

per-record round trips to Application
on the way to cluster

• Not always a “predict” problem per-
se since you might be looking for
unknowns

• Examples: clustering for unlabeled
population health, customers,
network behavior

Deployment Pattern
• Forward deployed Model or co-

located Model with data, depends:
May require interactive 3rd party
AutoML orchestrations via API

Outputs / Results
• Model results collected on client (i.e.

Entropy evaluation if Clustering)
Parallel processing with co-located
data

• Extract, preprocess, train, evaluate,
rerun with new data, training,
evaluation, reporting…..

15
RDBMS or Ignite Native Persistence

Batch reads,
inbound only

4

RDBMS or Ignite Native Persistence

2 2 2 23 3 3 3

model

1
Resultant

model

5

APIs to AutoML DataOps, MLOps, etc

Multiple Algorithms
run in parallel for
faster model
selection
• OLTP data

(historical and/or
online)

• ML compute tasks
as needed pre
training cycle

2019 © GridGain Systems16

Apache Ignite 2.8 ML/DL

Pipeline APIs, Algorithms

2019 © GridGain Systems

Apache Ignite Continuous Learning framework

Transactional Persistence

Distributed Machine Learning Datasets

TensorFLowRegressionsK-Means Decision Trees

In-Memory Data Store

Distributed In-Memory Machine and Deep Learning

Compute and Service Grid

C++.NETJava PythonBinary Protocal
(Thin client)

Distributed
Algorithms

Large Scale
Parallelization

Multi-language
Support

No ETL

Distributed
Dataset based
on partitioned
caches

2019 © GridGain Systems

Apache Ignite 2.8 ML Out-Of-The-Box

18

Algorithms for every ML Pipeline use case
Pipeline Stage Output

Data Extraction
Preprocessing

• Feature Vectorization (i.e. columns of interest in ML training)
• Handling the major column types: string, categoricals, numbers
• Normalization of variables
• Preventing overfitting (Cross Validate, Test/Train Split)

Training
Evaluation (before deployment)

• Regression labeled data for numeric estimation
• Classifying labeled data for predicting output classes
• Importing from 3rd party work benches XGBoost, Spark, H20 …
• Loading previously trained & saved Ignite models

Prediction
Performance
Retraining

• Extensive set of predictive Algorithms including newly released Ensembles
• Transaction & Batch workloads
• Deployment flexibility: Either front-deployed near your Application client or

co-located with OLTP cache data

2019 © GridGain Systems19

Apache Ignite Distributed PreProcessing:
Normalization & Scaling

https://medium.com/@nsethi610/data-cleaning-scale-and-normalize-data-4a7c781dd628

Improved Model training velocity and
accuracy
• Prevent large magnitude variables

from overwhelming smaller ones
• Speed up processing by re-centering

https://medium.com/@nsethi610/data-cleaning-scale-and-normalize-data-4a7c781dd628

2019 © GridGain Systems

Apache Ignite Distributed preprocessing:
Categorical values: One-Hot encoders

* Also included:
String Encoding

2019 © GridGain Systems

Apache Ignite Distributed Training:
Clustering

21

For “unlabeled” data – the data appears
continuous but are there actually
classes like “high risk”, “medium risk”,
“low risk”?

Examples:

• Population Segmentation (health, retail,
genomics)

• Anomaly Detection

• Network throughput characterization
K-means , GMM

2019 © GridGain Systems

Apache Ignite Distributed Training:
Classification & Regression

22

Predicting output classes
• Fraud detection
• Credit Card Scoring
• Clinical Trials
• Customer Segmentation

Numerical Estimation
• Trend Analysis
• Financial Forecasting
• Time Series Prediction
• Response Modeling (Pharma, etc)

• Logistic
Regression &
Naive Bayes

• SVM, KNN, ANN
• Decision trees &

Random Forest
• Import XGBoost,

Spark

• KNN & Linear
Regressions• Decision tree
regression• Random forest
regression• Gradient-boosted
tree regression• Import XGBoost,
Spark

2019 © GridGain Systems

Apache Ignite: TensorFlow Integration

23

>>> import tensorflow as tf

>>> from tensorflow.contrib.ignite import IgniteDataset

>>>

>>> dataset = IgniteDataset(cache_name="SQL_PUBLIC_KITTEN_CACHE")

>>> iterator = dataset.make_one_shot_iterator()

>>> next_obj = iterator.get_next()

>>>

>>> with tf.Session() as sess:

>>> for _ in range(3):

>>> print(sess.run(next_obj))

{'key': 1, 'val': {'NAME': b'WARM KITTY'}}

{'key': 2, 'val': {'NAME': b'SOFT KITTY'}}

{'key': 3, 'val': {'NAME': b'LITTLE BALL OF FUR'}}

Use Cases - Operational data “High
dimension” data (Images, Text, Audio,
speech)
• Image data classification
• Natural Language Processing Clinical notes
• Document Classification, Free Form text

2019 © GridGain Systems

To Summarize: Apache Ignite for Continuous
Learning at Scale

24

Massive Scale for Memory, Storage, (ML) Computation
• Massive Throughput with minimal (or even eliminated) ETL data movements
• Massive operational data sizes + in-place parallel processing
• Faster cycle times for OLTP transactions, ML/DL operations

Integrates with Existing ML / DL operations
• Low-level Distributed APIs to integrate with Auto ML and other Data Science

workflows
• Apache Ignite integrations to leverage Spark, TensorFlow pipelines; including Model

imports from other tool sets such as XGBoost, Spark, others

2019 © GridGain Systems25

Demonstrations, Code
Walkthroughs

2019 © GridGain Systems

APIs: Building and Using the Predictive Model

26

Some representative API call signatures on typical Model object Pipeline Stage comments

MyIgniteModel = My<AlgorithmSpecific>Trainer.fit(. . .)
MyXGBModel = MyModelBuilder.build(. . . , myXGBParser, . . .
)
MySparkModel = (MyAlgorithm)SparkModelParser.parse(. . .)

Create an instance of the Model: MyModel created either by fit() call
(distributed training on the algorithm specific trainer) or parsing from
Spark, XGBoost, other from saved Ignite Model . Note: Use of the New
Pipeline calls means you can replace fit() calls on individual algorithms
with a single API if desired

Accuracyvalue = MyEvaluator.evaluate(. . . , MyModel, . . .) Test the model before you use it: Accuracy value is a number (double).
MyModel passed as one of the inputs for accuracy checking. Several
accuracy measures available including: accuracy, F-measure, Precision,
Recall, Specificity, MAE …..

Predictedvalue = MyModel.predict(input field values) Predict outputs for incoming transaction: “Predicted value” is a
double returned from the deployed model to an external application. You
should probably wrap this call in a service to enforce things like security,
latency, etc

Measuring Predictions versus Actuals performance has no standard API per
se. You’ll need to capture both values and then do comparisons periodically…

Track Prediction accuracy over time: Examples: For Regression, a
common measure for error is MAE (Mean Absolute Error) or MSE (Mean
Squared Error). For Classification, (Correct # guesses / total # guesses)

MyModelVersion2 = MyModelVersion1.update(...,
newTransactionsCache, MyModelVersion1, . . .)

When model accuracy drifts over time, update with latest data
sample: Input arguments include a reference to the older model plus a
reference to the new set of data

2019 © GridGain Systems

Building and Using the Predictive Model: try out these
examples, many more….

27

All ML examples contained in
this package

Building Models Tutorial package provides
best overall overview (Enhanced for 2.8)
• More algorithms added, including hyperparameter

tuning steps
• Complete pipeline shows accuracy comparisons for

each algorithms: pipeline aggregrator, missing values
processor, categoricals processor, scaling, test-train
split, cross validation, several trainers…

Using a Model Deploying then invoking
output = mdl.predict(inputrecord)
• Also show loading to reuse a saved Model from

storage

2019 © GridGain Systems

Resources

28

• Documentation:
– https://apacheignite.readme.io/docs

• Python support
– https://github.com/gridgain/ml-python-api

• Examples and Tutorials:
– https://github.com/apache/ignite/tree/master/examples/s

rc/main/java/org/apache/ignite/examples/ml

• Details on TensorFlow
– https://medium.com/tensorflow/tensorflow-on-apache-

ignite-99f1fc60efeb

https://apacheignite.readme.io/docs
https://github.com/gridgain/ml-python-api
https://github.com/apache/ignite/tree/master/examples/src/main/java/org/apache/ignite/examples/ml
https://medium.com/tensorflow/tensorflow-on-apache-ignite-99f1fc60efeb

2019 © GridGain Systems

Advanced Toolkit for Machine Learning Experts

• Pipelining APIs
– https://apacheignite.readme.io/docs/pipeline-api

• Evaluators
– https://apacheignite.readme.io/docs/evaluator

• Model cross-validation
– https://apacheignite.readme.io/docs/cross-validation

• Models ensembling
– https://apacheignite.readme.io/docs/ensemble-methods

https://apacheignite.readme.io/docs/pipeline-api
https://apacheignite.readme.io/docs/evaluator
https://apacheignite.readme.io/docs/cross-validation
https://apacheignite.readme.io/docs/ensemble-methods

2019 © GridGain Systems

Join Apache Ignite Community!

• Rapidly Growing Engineering Community

• Great Way to Learn Distributed Systems,
Computing, SQL, ML, Transactions

• How To Contribute:
– https://ignite.apache.org/community/contribute.html

• Join Ignite Meetups:
– https://ignite.apache.org/meetup-groups.html

https://ignite.apache.org/community/contribute.html
https://ignite.apache.org/meetup-groups.html

2019 © GridGain Systems31

Q & A

