
Apache Ignite Best Practices:
Cluster Topology Management and

Data Replication

Ivan Rakov
Apache Ignite Committer

Senior Software Engineer in GridGain Systems

Too many data? Distributed Systems to the rescue!

● Horizontal scale at a lower cost

● New challenges
○ How to partition the data?
○ How to deploy cluster properly?
○ How to grow/shrink cluster topology safely?

How to achieve this and don’t lose your data?
You’ll know some best practices today.

Agenda
● In-memory cluster management
● Persistent cluster management

○ Baseline Topology: why?
○ Baseline Topology: and finally, what is it?
○ Baseline Topology: API
○ Use case: Managing persistent cluster with BLT
○ Split-brain scenarios: how BLT and Zookeeper may help

Agenda
● In-memory cluster management
● Persistent cluster management

○ Baseline Topology: why?
○ Baseline Topology: and finally, what is it?
○ Baseline Topology: API
○ Use case: Managing persistent cluster with BLT
○ Split-brain scenarios: how BLT and Zookeeper may help

In-memory approach: replication as data loss protection
backup factor = 1

1 6

7 4
Node 4

1 2

3 8
Node 1

5 2

7 4
Node 2

5 6

3 8
Node 3

In-memory approach: replication as data loss protection
backup factor < 1, next node crash will cause data loss

1 6

7 4
Node 4

1 2

3 8
Node 1

5 2

7 4
Node 2

5 6

3 8
Node 3

In-memory approach: replication as data loss protection
topology change leads to affinity reassignment and rebalancing, backup factor = 1

Node 1

Node 2

Node 3

1 2 6

3 8 7

5 6 4

3 8

5 2 1

7 4

1 6

7 4
Node 4 6

1

7

4

Use case: in-memory mode

1. How to deploy cluster? Just start nodes.

2. How to scale and expand topology? Just start nodes.

3. How to shrink topology? Just remove nodes, but not all at once.

Your data will be automatically rebalanced over the new set of nodes.

Use case: in-memory mode

1. How to deploy cluster? Just start nodes.

2. How to scale and expand topology? Just start nodes.

3. How to shrink topology? Just remove nodes, but not all at once.

Your data will be automatically rebalanced over the new set of nodes.

Ok, and where’s the challenge?

Agenda
● In-memory cluster management
● Persistent cluster management

○ Baseline Topology: why?
○ Baseline Topology: and finally, what is it?
○ Baseline Topology: API
○ Use case: Managing persistent cluster with BLT
○ Split-brain scenarios: how BLT and Zookeeper may help

Persistent mode: backups are still present on drives

Node 1

Node 2

Node 3

1 2 6

3 8 7

5 6 4

3 8

5 2 1

7 4

1 6

7 4
Node 4 (offline) 6

1

7

4
LFS

LFS

LFS

LFS

Do we really need to panic and rebalance immediately?

Estimating rebalance time

1. In-memory mode

○ Node leaves: a lot of time.

○ Node returns: nearly the same amount.

2. Persistent mode

○ Node leaves: a lot of time, much more than in memory-only mode.*

○ Node returns after long delay or with LFS cleared: nearly the same amount.

○ Node returns after short delay: only diff is transferred.

Delta-WAL rebalancing is awesome!

Should we panic after all? Maybe we should hold rebalancing for a while.

Agenda
● In-memory cluster management
● Persistent cluster management

○ Baseline Topology: why?
○ Baseline Topology: and finally, what is it?
○ Baseline Topology: API
○ Use case: Managing persistent cluster with BLT
○ Split-brain scenarios: how BLT and Zookeeper may help

Baseline Topology: regular set of working nodes

● Current online server nodes = {ONLINE}
● Temporarily unavailable server nodes = {OFFLINE}
● Set of nodes is fixed as baseline = {BASELINE}

● Without baseline topology
○ Affinity is calculated by {ONLINE} set
○ Partitions reside on {ONLINE} node set

● With baseline topology
○ Affinity is calculated by {BASELINE} set
○ Partitions reside on {BASELINE} \ {OFFLINE} node set

Baseline topology: regular set of working nodes
(partition → node) is calculated according to baseline instead of actual topology

1 6

7 4
Node 4

1 2

3 8
Node 1

5 2

7 4
Node 2

5 6

3 8
Node 3

LFS

LFS

LFS

LFS

BLT = [1, 2, 3, 4]

Baseline topology: regular set of working nodes
(partition → node) is calculated according to baseline instead of actual topology

1 6

7 4
Node 4 (offline)

1 2

3 8
Node 1

5 2

7 4
Node 2

5 6

3 8
Node 3

LFS

LFS

LFS

LFS

BLT = [1, 2, 3, 4]new primary

new primary

Baseline topology: regular set of working nodes
(partition → node) is calculated according to baseline instead of actual topology

1 6

7 4
Node 4 (offline)

1 2

3 8
Node 1 5 2

7 4
Node 2

5 6

3 8
Node 3

LFS

LFS

LFS

LFS

BLT = [1, 2, 3, 4]

Node 5

LFS

Baseline topology: regular set of working nodes

1 6

7 4
Node 4 (offline)

1 2

3 8
Node 1

5 2

7 4
Node 2

5 6

3 8
Node 3 (offline)

LFS

LFS

LFS

LFS

BLT = [1, 2, 3, 4]
partition 6 = lost

Rule of thumb: node isn’t expected to be back soon → change BLT

Agenda
● In-memory cluster management
● Persistent cluster management

○ Baseline Topology: why?
○ Baseline Topology: and finally, what is it?
○ Baseline Topology: API
○ Use case: Managing persistent cluster with BLT
○ Split-brain scenarios: how BLT and Zookeeper may help

Baseline topology: API
Create:

●
Unlike in-memory, persistent cluster should be activated manually
First activation establishes baseline topology
BLT is persisted in LFS in special “metastore” partition

●
Sets current node set as BLT, works like compareAndSet

●

Baseline topology bonus: automatic activation

Without baseline:

● on every cluster start in persistent mode

With baseline:

● First start:
● Next start:

Agenda
● In-memory cluster management
● Persistent cluster management

○ Baseline Topology: why?
○ Baseline Topology: and finally, what is it?
○ Baseline Topology: API
○ Use case: Managing persistent cluster with BLT
○ Split-brain scenarios: how BLT and Zookeeper may help

Use case: first cluster activation

1. Start necessary number of nodes, e.g. with

At this moment:

○ Cluster is inactive and can’t process user requests

○ Baseline Topology is not defined yet

2. Activate the cluster, e.g. with .

This action:

○ Will set current set of online server nodes as Baseline Topology

○ Will make cluster active and capable of responding to user requests

Use case: cluster restart

1. Deactivate cluster

2. Stop all nodes

3. Do the necessary maintenance - for example, add new .jar with actual business code

4. Start all nodes

a. Cluster will be activated automatically once last BLT node joins the cluster

b. If some BLT nodes are unavailable, cluster still can be activated manually with

BLT will remain the same, therefore backup factor will be decreased.

Use case: expanding topology

1. Start new nodes

2. Add new nodes to the BLT with one of the following ways:

3. Data will be rebalanced over the new set of nodes

Use case: shrinking topology

1. Stop nodes that should be removed

2. Don’t stop more than nodes at once.

3. Remove stopped nodes from the BLT with one of the following ways:

4. Data will be rebalanced over the new set of nodes

Use case: please, don’t make me do manual actions
● Implement your own BLT change logic with Ignite Events

https://apacheignite.readme.io/docs/baseline-topology#
section-triggering-rebalancing-programmatically

● Baseline Autochange Policy: expected in AI 2.7

https://apacheignite.readme.io/docs/baseline-topology#section-triggering-rebalancing-programmatically
https://apacheignite.readme.io/docs/baseline-topology#section-triggering-rebalancing-programmatically

Agenda
● In-memory cluster management
● Persistent cluster management

○ Baseline Topology: why?
○ Baseline Topology: and finally, what is it?
○ Baseline Topology: API
○ Use case: Managing persistent cluster with BLT
○ Split-brain scenarios: how BLT and Zookeeper may help

Surviving split-brain: if you want to pick CP from CAP

● The only reliable way to build CP system is shutting down all subclusters except one
● Consistency will be sacrificed during merge of conflicting updates otherwise

activate

split-brain

BLT = [1, 2, 3]

Surviving split-brain: if you want to pick CP from CAP

● Implement to determine which part should die

activate

split-brain

BLT = [1, 2, 3]

Hello, guys!
I am Topology
Validator.

Topology Validator

Big guy Tiny guy

Surviving split-brain: if you want to pick CP from CAP

● should return false on victim subcluster

activate

split-brain

BLT = [1, 2, 3]

Tiny guy

I have considered all
the consequences.
Tiny guy, you should kill
yourself for the greater
good.

Farewell, folks!

Big guy

R.I.P. bro

Topology Validator

Surviving split-brain: if you want to pick CP from CAP

● If is implemented correctly, all subclusters except one die

activate

split-brain

BLT = [1, 2, 3]

Tiny guy

Good boy.
My job is done here.

Big guy

Topology Validator

Surviving split-brain: if you want to pick CP from CAP

● All subclusters except one are offline, consistency violation is prevented

activate

split-brain

BLT = [1, 2, 3]

Tiny guy (offline)Big guy

updates

Hypothetically, you still can ruin everything

● won’t prevent killed subcluster from restart

activate

split-brain

BLT = [1, 2, 3]

Tiny guy (zombie)

I live… AGAIN!
updates

conflicting
updates

Big guy

Baseline topology bonus: post-split-brain merge protection

activate

split-brain

updates conflicting updatesMESS

activate

BLT = [1, 2, 3]

BLT = [1, 2] BLT = [3]

Baseline topology bonus: post-split-brain merge protection

● Baseline hash chain is maintained: all historical values of
●

● Rule of thumb: after split, living subcluster starts first, idle subcluster joins

Baseline topology bonus: post-split-brain merge protection

history = []

history = [h1]

history = [h1, h2]
BLT change

activate

split-brain

history = [h1, h2] history = [h1, h2]

history = [h1, h2] history = [h1, h2, h3]

activate

merge rejected: h4 ∉ [h1, h2]

Baseline topology bonus: post-split-brain merge protection

history = []

history = [h1]

history = [h1, h2]
BLT change

activate

split-brain

history = [h1, h2] history = [h1, h2]

history = [h1, h2, h3]

BLT change

history = [h1, h2]

idle

merge accepted: h2 ∈ [h1, h2, h3]

Surviving split-brain: let external Zookeeper do the job

● Use ZookeeperDiscoverySpi which will detect split-brain and kill smaller subcluster

Zookeeper

Case 1: Intracluster peer-to-peer communication loss

● Nodes will report Zookeeper about communication problems
???

Big guy Tiny guy

Zookeeper

Case 1: in-cluster peer-to-peer communication loss

● Zookeeper will calculate largest fully connected subcluster and kill all other nodes

Big guy Tiny guy

Zookeeper

Tiny guy, you should kill yourself.

OK

Case 1: in-cluster peer-to-peer communication loss

● All subclusters except one are offline, consistency violation is prevented

Big guy Tiny guy (offline)

Zookeeper

Case 2: Total subcluster isolation

● Zookeeper excludes unavailable nodes from topology
???

Big guy Tiny guy

Zookeeper

Case 2: Total subcluster isolation

● Nodes in unavailable subclusters can’t discover each other without Zookeeper

Big guy Tiny guy
(dies immediately
without Discovery SPI)

Zookeeper

Thank you for attention!
Questions?

