

Adding Speed and Scale to PostgreSQL Database Deployments

Rob Meyer Outbound Product Management, GridGain

May 22, 2019

2019 © GridGain Systems

History of PostgreSQL

- Leading Open Source RDBMS
 - Ever since MySQL acquisition by Sun/Oracle ...
- **Over 30 Different Variants**
 - Host of OLTP and OLAP
 - Cloud offerings as well
- More Recent Focus on Scale
 - 9.0 (2015): Replication
 - 10.0 (2017): Logical replication
 - 11.0 (2018): Improvements to partitioning and parallelism

2000

2010

https://wiki.postgresgl.org/wiki/PostgreSQL derived databases

Challenges with Speed and Scale It's not just about the database

Challenges with Speed and Scale It's not just about the database

- 1. Ask the "5 why's" to find the speed and scale challenges
- 2. Optimize for end-to-end speed and scale
- 3. Look ahead over many projects
- Choose the right long-term PostgreSQL-related and 3rd party products

PostgreSQL Database Options for Adding Speed and Scale

2019 © GridGain Systems

GridGain Company Confidential

GridGain

PostgreSQL and 3rd Party Options

- Options to Lower Latency
 - Pgmemcache
 - Column store extension
- Options to Improve Scalability (OLTP)
 - PostrgreSQL replication
 - Postrgres-XL
 - 2ndQuadrant
 - EnterpriseDB
 - Citus Data
 - Amazon RDB for Postgres
- Options to Improve Scalability (OLAP) ...

In-Memory Column Store and Pgmemcache Lowers read latency but not at scale

- "Built-in" Options
 - Use a RAM disk for storage
 - UNLOGGED tables in RAM
- In-Memory Column Store
 - Drop-in extension stores data as columns in shared buffers (RAM)
 - Slows down transactions, suffers from instabilities, potential data loss
- Pgmemcache
 - User-defined functions to use memcache in the context of PostgreSQL
 - Same limitations as memcache: cache aside cache that lowers latency but must be managed by application
 - Doesn't help with scalability, so doesn't solve limited network bandwidth for large data sets

How to Scale PostgreSQL Horizontally

- Replication for Read Scalability
 - PostgreSQL Replication: WAL-based replication using streaming (hot and warm)
 - Manual failover
 - No automatic recreation of secondary
- Sharding for Write Scalability
 - A manual process
 - Hard to manage sharding to balance different workloads
- Cloud Offerings are One Option
 - Amazon RDS and Aurora
 - Azure and Google offerings
- OLAP Offerings Exist as Well, But OLAP and OLTP Are Separate
 - HP Vertica
 - Teradata (Aster Data)
 - IBM Netezza
 - Pivotal Greenplum (now open source)

Pgpool-ii – Load Balancing Middleware https://www.pgpool.net

- Open Source (BSD License)
- Middleware Load Balancer (transparent proxy)
 - Connection pooling
 - Replication
 - Load balancing
 - Queues connections (versus rejecting them)
 - Query caching (lowers latency by caching SELECT statements)
- Good for simplifying load balancing and connection management to improve read scalability
- Not recommended by EnterpriseDB for use as the replication mechanism

EnterpriseDB – Heterogeneous Replication https://www.enterprisedb.com

• Founded in 2004

- Have a larger EDB Postgres Platform
- Employ several of the the leading PostgreSQL contributors
- EDB Postgres Replication Server (EPRS)
 - Single-master or multi-master (bi-directional) replication
 - Also supports Oracle and SQL Server (using non-XA triggers)
- The only out-of-the-box heterogeneous replication solution
- Not Well Suited For:
 - Immediate consistency: relies on async, not transactional replication
 - Performance: trigger-based replication for Oracle, SQL Server adds significant load.
 Also, Infinite Cache (read/write-through cache) deprecated as of Release 8.2
 - Scalability: need to manage partitioning, rebalancing manually

2ndQuadrant – Distributed Replication (Postgres-BDR) https://www.2ndquadrant.com/

- Founded in 2001 by a Leading PostgreSQL Contributor
- Postgres-BDR (Bi-Directional Replication)
 - Open source
 - PostgreSQL only
 - Bi-directional replication with immediate or eventual consistency
 - Supports replication and sharding
 - Supports pushdown to shards with aggregation to minimize network traffic
- Not Well Suited For:
 - Heterogeneous database workloads
 - Implementing a distributed database ...

2ndQuadrant – Distributed PostgreSQL (Postgres-XL) https://www.2ndquadrant.com/

- Another Offering from 2nd Quadrant
 - Postgres-BDR: read/write replication
 - Postgres-XL: distributed PostgreSQL
- Postgres-XL
 - Replication to scale reads
 - Dynamic data redistribution and balancing
 - Distributed transaction processing (with an XA coordinator)
- Not Well Suited For:
 - Standard PostgreSQL (a fork that isn't 100% compatible)
 - High availability: takes time for a warm node to come up
 - Only tested for asynchronous transactions, uses one core per node

Citus Data – Distributed PostgreSQL (Citus) https://www.citusdata.com/

- Acquired by Microsoft January 2019
 - Open source PostgreSQL extension
 - Also Enterprise version on-premise, Azure/AWS SaaS
- Citus is the Best Distributed PostgreSQL
 - Coordinator node manages distributed SQL across worker nodes
 - Supports zero-downtime for rebalancing shards as nodes are added
 - As of release 7.1 (2017) supports synchronous distributed transactions
- Not Well Suited For:
 - Lowering latency: same limitations as PostgreSQL on each worker node
 - Heterogeneous database environments: PostgreSQL-only
 - Java, .NET, C++ processing: only distributed SQL.

GridGain Company Confidential

GridGain

How an In-Memory Data Grid Works

How an IMDG Works

- Slides in-between PostgreSQL
 Database and the app / analytics
- Acts as the new database

Benefits

- No rip-and-replace of PostgreSQL
- In-memory speed
- Horizontal scalability
- Collocated computing
- Merges data across sources
- Unlocks data for new applications

In-Memory Data Grid (IMDG)

In-Memory Computing Comparisons https://www.gridgain.com/resources/product-comparisons

Vendors Compared

- Oracle Coherence
- Pivotal Gemfire (Apache Geode)
- GigaSpaces
- GridGain (Apache Ignite)
- Hazelcast
- Redis (Cache)
- Terracotta

GridGain In-Memory Computing Platform

- Built on Apache Ignite
 - Comprehensive platform that supports all projects
 - No rip and replace
 - In-memory speed, petabyte scale
 - Enables HTAP, streaming analytics and continuous learning
- What GridGain adds
 - Production-ready releases
 - Enterprise-grade integration, security, deployment and management
 - Global support and services
 - Proven for mission critical apps

GridGain In-Memory Computing Platform

Add speed and scale to existing applications Store new types of (big) data

Ingest and process streaming data with Apache Spark and other streaming analytics technologies to support real-time analytics

Real-time Business

Implement real-time decision automation including continuous machine and deep learning

Accelerate Existing Applications with No Rip and Replace

- Slides in-between apps and RDBMSs with no rip and replace
 - ANSI-99 SQL compliant
 - Support for ACID transactions
- Accelerates existing app performance
- Offload new data and computing requirements (real-time auditing and compliance, analytics, computations)

Innovate with Existing and New Data

GridGain as an In-Memory Database (IMDB)

Memory-centric storage

- From 100% in-memory to 100% disk
- Leverages any combination of RAM, Flash, SSD, Intel 3D Xpoint and disk
- Low cost, disk-based reliable persistence
- Immediate restart during recovery
- Highest read+write performance
 - In-memory with unlimited linear, scale-out on commodity servers
 - SQL and NoSQL (multi-model)
 - Always-on availability
- Single data access layer for ALL data
- Extensible compute grid

Innovate with Streaming Analytics

GridGain for Stream Ingestion, Processing and Analytics

- Native support for stream ingestion
 - Built-in support for high speed ingestion from Apache Camel, Flink, Flume, Spark, Storm, JMS, Kafka and MQTT
 - Combines streams with data-at-rest
 - Collocated data processing across all data, including optimized SQL querying
 - Publish/subscribe (continuous queries)
- Broadest in-memory support for Apache Spark
 - Native in-memory RDD, DataFrame support
 - Shares state in memory across Spark jobs
 - Native access to ANY data across GridGain cluster
 - Optimizes SparkSQL using distributed SQL and indexing

Innovate with Continuous Learning

Continuous Learning Framework for Machine and Deep Learning

- Real-time performance on petabytes of data
 - No ETL (runs learning in place)
 - In-memory performance
 - Horizontal, linear scalability
- Machine learning
 - Linear, multi-linear regression
 - K-means clustering
 - Decision trees
 - K-NN classification and regression
- Deep Learning
 - TensorFlow integration

In-Memory Data Grid	- - - 	n-Memory Database	Streaming Analytics		(Learn	Continuous hing Framework	
Machine and Deep Learning							
Messaging		Stream Processing			Events		
Key-Value		ANSI-99 SQL			ACID Transactions		
Compute and Service Grid							
In-Memory Data Store							
Persistent Store							
Jainframe F	RDBIMS	Data	Layer	NoSC		Hadoop	

Case Study: FSB Sports Betting Platform

https://www.imcsummit.org/2018/eu/session/memory-computing-and-sports-betting

A leading sports betting platform as a service that supports thousands of bets per second processed across 750+ casino and live dealer games across 36 branded sites, 11 countries, 4 continents

Challenges

- Real-time ingestion of betting data
- Real-time calculation of betting odds and liability
- Lack of SQL querying with Memcached

GridGain Enables

- Real-time transactions and analytics
- Dynamic scalability across hybrid cloud
- Multi-datacenter availability

Questions?

Driving In-Memory Computing Thought Leadership GridGain produces the world's only In-Memory Computing Conference

https://www.imcsummit.org/

In-Memory Computing Summit **Europe**

• Next event in London, June 2019

In-Memory Computing S U M M I T

In-Memory Computing Summit North America

• Next event in Silicon Valley, Nov. 2019

GridGain Resources https://www.gridgain.com/

Ignite Resources https://ignite.apache.org/

- Webinars
 - GridGain: https://www.gridgain.com/resources/webinars
 - In-Memory Computing Summit: <u>https://www.imcsummit.org/</u>
- White Papers: https://www.gridgain.com/resources/papers
- Videos: <u>https://www.gridgain.com/resources/videos</u>
- Blogs: <u>https://www.gridgain.com/resources/blog</u>
- Downloads
 - Apache Ignite: https://ignite.apache.org/download.cgi
 - Free GridGain Community Edition, or free 30-Day Enterprise or Ultimate Edition Trial

https://www.gridgain.com/resources/download

Adding Speed and Scale to PostgreSQL Database Deployments

Rob Meyer Outbound Product Management, GridGain

May 22, 2019

2019 © GridGain Systems