
5 Ways to Accelerate and
Scale Out PostgreSQL

Denis Magda

Apache Ignite Committer and PMC Chair

GridGain VP of Product Management



2019 © GridGain Systems @denismagda

Agenda

1

• Tapping into RAM with caching techniques

• Sharding and replication solutions 

• Cache and scale out with in-memory data grids

• Q&A



2019 © GridGain Systems @denismagda2

Caching Techniques



2019 © GridGain Systems @denismagda

Ultimate Purpose of Caching

3

Speed up operations by reducing 

disk access and computation (i.e. CPU)



2019 © GridGain Systems @denismagda

Computer Latency at Human Scale

4

System Event Actual Latency Scaled Latency

One CPU cycle 0.4 ns 1 s

Level 1 cache access 0.9 ns 2 s

Level 2 cache access 2.8 ns 7 s

Level 3 cache access 28 ns 1 min

Main memory access (DDR DIMM) ~100 ns 4 min

Intel Optane DC persistent memory access ~350 ns 15 min

Intel Optane DC SSD I/O < 10 µs 7 hrs

NVMe SSD I/O ~25 µs 17 hrs

SSD I/O 50-150 µs 1.5 - 4 days

Rotational disk I/O 1 – 10ms 1 – 9 months

Internet: SF to NY 65 ms 5 years



2019 © GridGain Systems @denismagda

Computer Latency at Human Scale

5

System Event Actual Latency Scaled Latency

One CPU cycle 0.4 ns 1 s

Level 1 cache access 0.9 ns 2 s

Level 2 cache access 2.8 ns 7 s

Level 3 cache access 28 ns 1 min

Main memory access (DDR DIMM) ~100 ns 4 min

Intel Optane DC persistent memory access ~350 ns 15 min

Intel Optane DC SSD I/O < 10 µs 7 hrs

NVMe SSD I/O ~25 µs 17 hrs

SSD I/O 50-150 µs 1.5 - 4 days

Rotational disk I/O 1 – 10ms 1 – 9 months

Internet: SF to NY 65 ms 5 years



2019 © GridGain Systems @denismagda

Basic Types of Caching in Postgres

6

• Query result caching

• Query plan caching

• Relation caching

– Data and indexes



2019 © GridGain Systems @denismagda

Relation caching: Shared Buffer and OS Buffer

7

• Postgres Shared Buffer Cache

– Allocated and managed by 
Postgres

• OS Buffer (aka. Page Cache)

– Caches chunks (pages) of files

• Suggestions/considerations:

– No silver bullet – select and tune

– Possible duplication between 
shared and OS caches

– Limited by local RAM capacity

Postgres 

Shared Buffer

OS Buffer

Disk

Data flow on

reads/writes



2019 © GridGain Systems @denismagda8

Horizontal Scalability



2019 © GridGain Systems @denismagda

Defining Requirements for Solution

9

• Strong Consistency (ACID)

• Load Balancing

• High-Availability and Failover



2019 © GridGain Systems @denismagda

Pgpool 2 for Read-Heavy Workloads

10

• Pgpool coordinator 

• Primary for reads and writes

• Hot replicas for reads

• Suggestions/considerations:

– Good for load balancing of read-

heavy workloads

– ACID enforces sync replication 

and limits a number of replicas

– Primary machine capacity defines 

your total cluster capacity



2019 © GridGain Systems @denismagda

Sharding With PostgreSQL-XL or CitusData

11

• Coordinator keeps metadata and 
distributes queries

• Data nodes store shards/partitions

• Supports data co-location and 
JOINs

• Suggestions/considerations:

– Suited for mixed workloads 

– Total capacity is your cluster 
capacity

– Scaling and failover is not trivial

– Disk-based solution 



2019 © GridGain Systems @denismagda12

Caching and Scaling With 
In-Memory Data Grids



2019 © GridGain Systems @denismagda

Apache Ignite/GridGain In-Memory Computing Platform

Mainframe NoSQL HadoopIgnite Persistence

Persistent Layer

RDBMS

Machine and Deep Learning

EventsStreamingMessaging
Transactio

ns
SQLKey-Value

Service GridCompute Grid

Application Layer

Web SaaS SocialMobile IoT
R

o
lli

n
g
 U

p
g
ra

d
e
s

S
e
c
u
ri
ty

 &
 A

u
d
it
in

g

M
o
n
it
o
ri
n
g
 &

 M
a
n
a
g

e
m

e
n
t

S
e

g
m

e
n

ta
ti
o

n
 P

ro
te

c
ti
o

n

D
a
ta

 C
e
n
te

r
R

e
p
lic

a
ti
o
n

N
e
tw

o
rk

 B
a
c
k
u
p
s

F
u
ll,

 I
n
c
re

m
e
n
ta

l,
 C

o
n
ti
n
u
o
u
s
 B

a
c
k
u
p
s

P
o
in

t-
in

-T
im

e
 R

e
c
o
v
e
ry

H
e
te

ro
g
e
n
e
o
u
s
 R

e
c
o
v
e
ry

In-Memory Data Store

GridGain Enterprise Features
Apache Ignite Features



2019 © GridGain Systems @denismagda14

Primary Ignite Deployment Modes

Enhance Legacy Architecture - IMDG Simplified Modern Architecture - IMDB

Ignite In-Memory Computing Platform

Application Layer

Web-Scale Apps Mobile AppsIoT Social Media

Ignite In-Memory Computing Platform

External Database

NoSQLRDBMS Hadoop

Application Layer

Web-Scale Apps Mobile AppsIoT Social Media

Ignite Persistence



2019 © GridGain Systems @denismagda

How Postgres is Accelerated?

15



2019 © GridGain Systems @denismagda

Distributed SQL

Persistent Store

ANSI-99 SQL

Compute Grid

JDBC ODBC

C++.NETJava REST
Binary Protocal 

(Thin client)

In-Memory Data Store
Indexes on 

RAM or Disk

Ignite Distributed SQL Support
Cross-platform 

Compatibility

DDL & DML 

Support

SELECT, UPDATE, 

INSERT, MERGE, 

CREATE, DELETE 

& ALTER

Dynamic 

Scaling



2019 © GridGain Systems @denismagda

Holy Grail of Distributed World: Affinity Collocation 

17

• Related data is on the same node

– Countries and Cities

– Departments and Employees

• Collocated Processing

– Efficient Distributed JOINs

– Collocated Computations

– Reduced network traffic

– Performance boost!



2019 © GridGain Systems @denismagda18

Ignite SQL Queries

1. Initial Query

2. Query execution over local data

3. Reduce multiple results in one

Ignite Node

Canada

Toronto

Ottawa

Montreal

Calgary

Ignite Node

India
Mumbai

New Delhi

1

2

23



2019 © GridGain Systems @denismagda

Life Without Stored Procedures: Compute Grid

GridGain Cluster

C1

R1

C2

R2

C = C1 + C2 

R = R1 + R2 

C = Compute

R = Result

in T/2 time

Automatic Failover

Load Balancing

Zero Deployment

In-Memory Data Store

Persistent Store

Server Node

In-Memory Data Store

Persistent Store

Server Node



2019 © GridGain Systems @denismagda

Transactions and Consistency

20

• Distributed Key-Value Transactions

– 2 phase commit protocol

– Spans to Postgres

• Transactional SQL (Beta)

– MVCC

• Strong or relaxed consistency

– Atomic and transactional tables

– Tunable Write-ahead-log settings



2019 © GridGain Systems @denismagda

Consistency Across Postgres and Ignite/GridGain

• Coordinator writes to the database first

• Commits in the cluster afterwards

• The database must be transactional

– Postgres!



2019 © GridGain Systems @denismagda22

Demo



2019 © GridGain Systems @denismagda

Apache Ignite – We’re Hiring ;)

23

• Rapidly Growing Community

• Great Way to Learn Distributed 

Storages, Computing, SQL, ML, 

Transactions

• How To Contribute:

– https://ignite.apache.org/

https://ignite.apache.org/community/contribute.html#contribute


2019 © GridGain Systems @denismagda

 -

 50,000

 100,000

 150,000

 200,000

A
p

r-
1

4

J
u
n

-1
4

A
u

g
-1

4

O
c
t-

1
4

D
e

c
-1

4

F
e

b
-1

5

A
p

r-
1

5

J
u
n

-1
5

A
u

g
-1

5

O
c
t-

1
5

D
e

c
-1

5

F
e

b
-1

6

A
p

r-
1

6

J
u
n

-1
6

A
u

g
-1

6

O
c
t-

1
6

D
e

c
-1

6

F
e

b
-1

7

A
p

r-
1

7

J
u
n

-1
7

A
u

g
-1

7

O
c
t-

1
7

D
e

c
-1

7

F
e

b
-1

8

A
p

r-
1

8

J
u
n

-1
8

A
u

g
-1

8

O
c
t-

1
8

D
e

c
-1

8

Apache Ignite Is a Top 5 Apache Project

Over 2M downloads per year 

and 4M total downloadsTop 5 Dev Mailing Lists

1.

2. 

3. 

4. 

5.

Top 5 User Mailing Lists

1.

2. 

3. 

4. 

5.

Monthly Ignite/GridGain Downloads

From January 1, 2019 Apache Software Foundation Blog Post: 

“Apache in 2018 – By The Digits”

A Top 5 Apache Software Foundation Project



2019 © GridGain Systems @denismagda25

Q&A

@apacheignite
@gridgain


