
Developing Apache Ignite Applications 
That Are Easy to Manage

Alexey Kukushkin
Professional Services Consultant

December 9, 2020



Motivation

• Operations typically exceed fifty percent of an IT system life cycle 
cost. 
• Developing manageable applications, the developers can significantly 

reduce the total cost of ownership. 
• Manageability is especially important for distributed applications 

considering their complexity and mission-critical use cases.

2020 © GridGain Systems 2



Agenda

• How to develop manageable applications with Apache Ignite
• Ignite’s monitoring and management features
• Demonstrate common operation use cases using popular monitoring 

systems

2020 © GridGain Systems 3



Developing for Monitoring & 
Management



Developing for Monitoring & Management

Developer’s goal: 
• Smoothly integrate the 

application into enterprise 
monitoring infrastructure

• Minimize time and effort to 
recover from a failure

2020 © GridGain Systems 5



Developing for Monitoring & Management

It is the developer’s responsibility to:
1. Develop Health Model
2. Instrument the code
3. Create and maintain Monitoring Spec for DevOps 
4. Develop and add monitoring tests to CI/CD pipeline

2020 © GridGain Systems 6



Health Model

• Health Model describes:
• Components that can be configured and restarted (reset)
• Synthetic transactions
• Health events

• DevOps are the Health Model’s target audience.
• Developers create Monitoring Spec to communicate Health Model to DevOps
• Developers test and update Monitoring Spec for every application and Ignite 

release 

2020 © GridGain Systems 7



Application Health Model

• Health State
• OK (Green)
• Warning (ORANGE): degradation
• Critical (RED): not operational

• Parent-Child
• Cardinality

• 1-to-1
• 1-to-many

• Health state propagation
• Parent -> All Children
• One of Children -> Parent
• All Children -> Parent

2020 © GridGain Systems 8

Ignite
ClusterK8S Pod

JVM

Ignite DB 
Volume

Ignite
Server

GC Heap
Default 

Data 
Region

Drools
Service

Business 
Central

KIE 
Scanner

Continuous 
Data Query

Maven 
Repo

*

Business Rules Executor



Global Health Model

DevOps integrate the application 
into global health model

2020 © GridGain Systems 9

Enterprise

Business 
Rules 

Executor



Ignite Health Model Components

• Physical or virtual machines, 
containers, Kubernetes pods
• Java and .NET VMs

• Managed heap
• GC

• Disk
• Native persistence
• Cluster snapshots

• Client and server nodes
• Cache Store
• Data regions

• Cluster topology
• Data Rebalancing
• Checkpointing
• Services
• Continuous Queries
• SQL & Scan Queries
• Transactions
• Compute Jobs
• Thread Pools
• Communication and Discovery 

Message Queues

2020 © GridGain Systems 10

https://ignite.apache.org/docs/latest/



Health Events



Events, Monitors, Alerts and Recovery

Monitoring & Management basics:
1. Application has logs and metrics that may trigger an event
2. Monitoring tool creates a monitor for every event
3. Occurrence of an event changes the monitor state
4. A change in the monitor state creates an alert and initiates automated 

recovery if provided

2020 © GridGain Systems 12



Health Events Are Actionable

• Describe only events that DevOps can act upon (Operationally 
Significant Events)
• Example health events:
• Ignite cluster segmentation
• JVM pause too long
• Heap usage too high
• Maven repo unavailable

• Example non-health events (do not include in Health Model)
• Failed to parse SQL query
• Invalid username or password

2020 © GridGain Systems 13



Health Events Are Specific

• Unambiguous recovery actions for DevOps
• Do not require additional investigation from DevOps
• Examples of specific events:
• Failed to connect to maven repo
• Malformed maven repo connection string

• Examples of non-specific event:
• HTTP Exception
• Malformed configuration

2020 © GridGain Systems 14



Event Collection

• Log File
• Path

• JMX
• Object name
• Attribute name

• SQL
• Ignite system view query
• Application table query

• Command Line

2020 © GridGain Systems 15



Snapshot and Historical Event Collection

• Historical events
• Append-only, multiple events in collection
• Logs
• Historical SQL tables

• Snapshot event: 
• single most-recent value
• Most JMX metrics
• Snapshot SQL tables

• Important for automated recovery (will review later)

2020 © GridGain Systems 16



Event Trigger Expression

Event is created when the expression becomes “true”:
• Operators:
• Text: contains, matches (regexp)
• Relational: =, <, >, >=, <=
• Logical: not, and, or

• Left operand: event source (implicit)
• Right operand: literal value
• Examples:
• contains “[10530]”
• > 95
• (>= 10) or (< 20)

2020 © GridGain Systems 17



Alerts

• Monitoring tool alerts on health events
• Email, SMS, Phone
• Ticket

• DevOps are responsible for configuring alerts
• Single event creates an alert on the first 

occurrence of the event

2020 © GridGain Systems 18

Event X

Alert X

Time

Single Event



Alerts: Repeated Event

• Number of events
• Time interval

2020 © GridGain Systems 19

Event X Event X Event X

Alert X

Time interval



Alerts: Missing Event

• Number of events
• Time interval

2020 © GridGain Systems 20

Event X Event X Event X

Alert X

Time interval



Alerts: Correlated Event

• Time interval
• Event Y, …, Event Z

2020 © GridGain Systems 21

Event X Event Y Event Z

Alert X

Time interval



Alerts: Correlated Missing Event

• Time interval
• Missing Event

2020 © GridGain Systems 22

Event X Event Y

Alert X

Time interval



Alerts: Health State Reset

• No alerts for unhealthy events (in warning or critical state)
• Reset event health state to enable alerting on that event
• Health state is event-specific
• Component is unhealthy if at least one event state is unhealthy

2020 © GridGain Systems 23

Event X Event X Event Y

Alert X

Event X Health Reset

Alert X Alert Y

Event X

Alert X

Event Y

Alert Y

Event Y Health
Event X Health



Automated Health Reset

• Expression: reset health when the event’s expression becomes false
• Not applicable to historical event collections (log files)
• Example: JVM Heap > 4 GB

• Event: reset health on occurrence of another event
• Example: contains “Connected to Audit cache store”

• Timer: reset health after specified timeout
• When you are sure the problem fixes itself within a time interval

2020 © GridGain Systems 24



Manual Health Reset

• As a developer, do your best to automate your application recovery
• Ignite Critical Failure Handler
• Retry cycles in the application
• Develop a mechanism to reset/restart application Health components that 

Ignite lacks (like Ignite services, continuous queries)

2020 © GridGain Systems 25

https://ignite.apache.org/docs/latest/perf-and-troubleshooting/handling-exceptions


Event Schedule

• Avoid opening alerts for expected scheduled downtime
• Example schedules:
• 24x7
• M-F
• M-F 8am-7pm

2020 © GridGain Systems 26



Event Knowledge

• Description
• Why the event occurred
• What is the impact

• Recovery actions
• Specific
• Avoid if-else
• Easy to automate if possible

2020 © GridGain Systems 27



Log Monitoring

• Historical event collection
• Automated health reset on false event expression not supported
• Write another “healthy” event on recovery to automatically reset state

• Include a unique ID to the log message
• Identifies specific event
• ID never changes
• Example log message: [10105] Failed to connect to BI Maven repo

• Be careful with regular expressions
• A complex regex that is fast with on a small log can kill a production server 

with a huge log

2020 © GridGain Systems 28



Synthetic Monitoring

Synthetic Transactions:
• Proactively detect problems (before real users)
• Subset of automated tests 
• Consider creating a Health Check operation
• Against live production
• Run Periodically

2020 © GridGain Systems 29



Monitoring Spec

• Developers create Monitoring Spec to communicate Health Model to 
DevOps
• Content
• Health Model Components Hierarchy
• Synthetic Monitoring
• Health Events

2020 © GridGain Systems 30









Monitoring Tests

• Develop automated tests for abnormal scenarios
• Include health event verification

• Test synthetic transactions
• Part of CI/CD pipeline

2020 © GridGain Systems 34



Monitoring & Management Tools

The tools fully supporting the described Health Model:
• Zabbix + Grafana
• Prometheus + ELK (Elasticsearch, Logstash, Kibana) + Grafana
• Microsoft SCOM / Microsoft Aquila (preview)

2020 © GridGain Systems 35



Apache Ignite Health Model



Apache Ignite Health Model

• The described Health Model is not specified for Ignite
• Include Ignite health model to your application health model
• Include only events applicable to your application

• No event IDs in Apache Ignite log files
• Use “contains” or “matches” to parse message text
• Test on every Apache Ignite upgrade

2020 © GridGain Systems 37



Ignite Components Restart

• Management interface:
• Command line: control.sh, ignitevisorcmd.sh
• SQL: KILL (sqlline.sh is included in Ignite)
• REST
• JMX
• API

• Restart (stop/start) is not available for many Ignite components
• Continues queries cannot be cancelled and started
• Services can be cancelled and started only in with Ignite API

• Consider adding management interface to your application

2020 © GridGain Systems 38

https://ignite.apache.org/docs/latest/tools/control-script
https://ignite.apache.org/docs/latest/tools/visor-cmd
https://ignite.apache.org/docs/latest/sql-reference/operational-commands
https://ignite.apache.org/docs/latest/tools/sqlline
https://ignite.apache.org/docs/latest/restapi
https://ignite.apache.org/docs/latest/monitoring-metrics/metrics


Ignite Node Configuration

2020 © GridGain Systems 39

Configuration:
• Lifetime

• Static
• Spring XML (Java, .NET)
• .NET App.config
• Code (any platform)

• Dynamic
• Caches and indexes (code or SQL DDL)

• Permanent if persistence is enabled
• Cluster state, ID & Tag, statistics on/off

• Scope
• Cluster-wide

• Caches, services, binary configuration, etc.
• Node-local

• Work directories, data region, WAL, thread pools, etc.



Ignite Node Restart

2020 © GridGain Systems 40

1. Deactivate if native persistence is enabled
• Ignite REST API, control.sh, visor or Web Console

2. Restart 
• Kill/start process or delete Kubernetes pod



Demo: Monitoring with 
Zabbix & Grafana



Monitoring Architecture

2020 © GridGain Systems 42

Monitoring 
Software
(Zabbix)

Monitoring 
Java gateway

LOG 
File

OS Metrics

MBean-
Objects

Monitoring 
agent

Monitoring
proxy

Data 
visualization

(Grafana)
JMX

















5
0







Summary

It is the developer’s responsibility to:
1. Develop Health Model
2. Instrument the code
3. Create and maintain Monitoring Spec for DevOps 
4. Develop and add monitoring tests to CI/CD pipeline

Additional development cost is much smaller than the 
reduced total cost of ownership.

2020 © GridGain Systems 53


