Search GridGain Blog

526 results found. Displaying 1 - 15
In this third article of the three-part series “Getting Started with Ignite Data Loading,” we continue to review data loading into Ignite tables and caches, but now we focus on using the Ignite Data Streamer facility to load data in large volume and with highest speed. Apache Ignite Data-Loading Facilities In the first article of this series, we discussed the facilities that are available to…
Read More
In this second article of the three-part “Getting Started with Ignite Data Loading” series, we continue our review of data loading into Ignite tables and caches. However, we now focus on Ignite CacheStore. CacheStore Load Facility Background Let’s review what was discussed about CacheStore in “Article 1: Loading Facilities.” The CacheStore interface of Ignite is the primary vehicle used in…
Read More
With this first part of “Getting Started with Ignite Data Loading” series we will review facilities available to developers, analysts and administrators for data loading with Apache Ignite. The subsequent two parts will walk through the two core Apache Ignite data loading techniques, the CacheStore and the Ignite Data Streamer. We are going to review these facilities in relation to specific…
Read More
Hadoop Data Lakes are an excellent choice for analytics and reporting at scale. Hadoop scales horizontally and cost-effectively and performs long-running operations spanning big data sets. GridGain, in its turn, enables real-time analytics across operational and historical data silos by offloading Hadoop for those operations that need to be completed in a matter of seconds or milliseconds. In…
Read More
Apache Ignite can scale horizontally to accommodate the data that your applications and services generate. If your in-memory cluster is about to run out of memory space, you can take advantage of horizontal scaling, which is one of Ignite’s foundational architectural capabilities. The “throw more resources into the cluster” approach is an often-heard piece of advice. However, in practice, most of…
Read More
Apache Ignite Deployment Patterns The Apache Ignite® in-memory computing platform comprises high-performance distributed, multi-tiered storage and computing facilities, plus a comprehensive set of APIs, libraries, and frameworks for consumption and solution delivery (all with a “memory first” paradigm). This rich set of capabilities enables one to configure and deploy Ignite in many diverse…
Read More
Note: This is the third and final post in the blog series: Continuous Machine Learning at Scale With Apache Ignite. For post 1 click here and for post 2 click here. In my first post, I introduced Apache® Ignite™ machine learning and explained how it delivers large-scale, distributed, machine-learning (ML) workloads. In my second post, I discussed the Apache Ignite model-building stages. The…
Read More
Note: This is post 2 in the blog series: Continuous Machine Learning at Scale with Apache Ignite. For post 1 click here and for post 3 click here. In my first post, I introduced the topic “continuous machine learning at scale with Apache Ignite,” which is how we members of the Apache® Ignite™ community describe machine learning (ML) architectures that offer the following advantages: Support…
Read More
Glenn Wiebe, Solutions Architect at GridGain, has created a helpful video series that introduces developers to Apache Ignite as an in-memory database (IMDB) and features a demo that will set up a working IMDB in ten minutes. The demo walks through the process of configuration creation, data loading and cluster querying via SQL tools. 1. Introduction Learn the difference between Apache Ignite as…
Read More
Note: This is post 1 in the blog series: Continuous Machine Learning at Scale with Apache Ignite. For post 2 click here and for post 3 click here. This is my first blog post in a series that discusses continuous machine learning at scale with the Apache® Ignite™ machine learning (ML) library. In this article, I’ll introduce the notion of continuous machine learning at scale. Then, I’ll discuss…
Read More
Kafka with Debezium and GridGain connectors allows synchronizing data between third party Databases and a GridGain cluster. This change data capture based synchronization can be done without any coding; all it requires is to prepare configuration files for each of the points. Developers and architects who can’t yet fully move from a legacy system can deploy this solution to give a performance…
Read More
In-memory computing can provide tremendous benefits for the 5G ecosystem. We’ve seen the marketing for the new fifth-generation mobile networks. The benefits of 5G for end-users are easy to understand. Speeds faster than your home broadband and latencies only a little slower promise to be game-changers for consumers, enhancing existing applications and opening open entirely new categories that we…
Read More
In keeping with our commitment to more regular and frequent releases, GridGain Web Console 2019.11.00 is now available for download from GridGain Downloads and DockerHub. This release includes improvements for deploying Web Console on RedHat OpenShift, updates to the hosted Web Console, and bug fixes.   RedHat OpenShift Support GridGain and Apache Ignite have supported container-based…
Read More
My acquaintanceship with PostgreSQL started back in 2009 - the time when many companies were trying to board the social networking train by following Facebook's footsteps. An employer I used to work for was not an exception. Our team was building a social networking platform for a specific audience and faced various architectural challenges. For instance, soon after launching the product and…
Read More
Introduction The Spark SQL engine provides structured streaming data processing. The benefit here is that users can implement scalable and fault-tolerant data stream processing between the initial data source and final data sync. You can read more about it here: https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html Apache Ignite provides the…
Read More