Search GridGain Blog

537 results found. Displaying 1 - 15
In this article, we look at how transactions work in Apache Ignite. We begin with an overview of Ignite’s transaction architecture and then illustrate how tracing can be used to inspect transaction logic. Finally, we review a few simple examples that show how transactions work (and why they might not work). Note that we assume you are familiar with the concept of key-value storage. If not,…
Read More
Since our initial launch in mid-2020, GridGain Control Center has strived to bring transparency and flexibility to the monitoring and development of Apache Ignite and GridGain applications. With each monthly update, we introduce new features to make it easier for admins and developers to understand what exactly is happening within their clusters. In our latest update (2020.11.00), we add new…
Read More
Imagine that we need to build a monitoring infrastructure for a distributed database, such as Apache Ignite. Let’s put metrics into Prometheus. And, let’s draw charts in Grafana. Let’s not forget about the notification system—we’ll set up Zabbix for that. Let’s use Jaeger for traces analysis. For state management, the CLI will do. As for SQL queries, let’s use a free JDBC client, such as DBeaver…
Read More
We recently announced the GridGain and Apache Ignite Operator for Kubernetes, which gives GridGain and Apache Ignite users a convenient way to deploy and manage their clusters. The automation provided by the solution simplifies cluster provisioning and minimizes the operational and management burden. In addition, our latest updates to the GridGain thin client and thick client deliver simplified…
Read More

Data Distribution in Apache Ignite

This blog is an abridged version of the talk that I gave at the Apache Ignite community meetup. You can download the slides that I presented at the meetup here. In the talk, I explain how data in Apache Ignite is distributed. Why do you need to distribute anything at all? Inevitably, the evolution of a system that requires data storage and processing reaches a threshold. Either too much data is…
Read More
Where do you store your passwords? Whether you’re integrating Apache Ignite with a relational database, a message queue, or something else, you probably need to manage secrets such as usernames, passwords, and security tokens. In this post, we consider a couple of options to avoid having secrets in your configuration file: using property files and integrating with HashiCorp Vault.…
Read More
Telcos can become a highly data-driven enterprise by leveraging the Digital Integration Hub (DIH) Architecture built on GridGain’s in-memory computing platform. In this blog post, I will discuss how the DIH architecture can help telcos develop better customer insights, generate new revenue streams and be ready to ride the 5G wave. This easy-to-adopt, no rip-replace architecture can meet the needs…
Read More
Now, in-memory cache technology is becoming popular, motivating companies to experiment with distributed systems. The technology is advertised to be fast, and data-load speed is often critical for building a successful solution prototype. This blog post provides a technical tutorial on how to populate a distributed Apache Ignite cluster with values that originate from large relational tables. All…
Read More
Using the initial-query, listener, and remote-filter features of Ignite continuous queries to detect, filter, process, and dispatch real-time events (Note that this is Part 3 of a three-part series on Event Stream Processing. Here are the links for Part 1 and Part 2.) Real-time handling of streams of business events is a critical part of modern information-management systems, including online…
Read More
Building an Event Stream Processing Solution With Apache Ignite (Note that this is Part 2 of a three-part series on Event Stream Processing. Here are the links for Part 1 and Part 3.) In the first article of this three part series, we talked about streaming systems, the associated event paradigm inherent in streams and how these concepts are seen at different levels of abstraction, the…
Read More
Characteristics, Types & Components of an Event Stream Processing System (Note that this is Part 1 of a three-part series on Event Stream Processing. Here are the links for Part 2 and Part 3.) Like many technology-related concepts, Streams or “Event Streaming” is understood in many different contexts and in many different ways such that expectations for Event Stream Processing (ESP) vary…
Read More
In this third article of the three-part series “Getting Started with Ignite Data Loading,” we continue to review data loading into Ignite tables and caches, but now we focus on using the Ignite Data Streamer facility to load data in large volume and with highest speed. Apache Ignite Data-Loading Facilities In the first article of this series, we discussed the facilities that are available to…
Read More
In this second article of the three-part “Getting Started with Ignite Data Loading” series, we continue our review of data loading into Ignite tables and caches. However, we now focus on Ignite CacheStore. CacheStore Load Facility Background Let’s review what was discussed about CacheStore in “Article 1: Loading Facilities.” The CacheStore interface of Ignite is the primary vehicle used in…
Read More
With this first part of “Getting Started with Ignite Data Loading” series we will review facilities available to developers, analysts and administrators for data loading with Apache Ignite. The subsequent two parts will walk through the two core Apache Ignite data loading techniques, the CacheStore and the Ignite Data Streamer. We are going to review these facilities in relation to specific…
Read More
Hadoop Data Lakes are an excellent choice for analytics and reporting at scale. Hadoop scales horizontally and cost-effectively and performs long-running operations spanning big data sets. GridGain, in its turn, enables real-time analytics across operational and historical data silos by offloading Hadoop for those operations that need to be completed in a matter of seconds or milliseconds. In…
Read More