
1. GridGain In-Memory Accelerator For Hadoop

GridGain's In-Memory Accelerator For Hadoop edition is based on the industry's first high-performance dual-mode in-memory file
system that is 100% compatible with HDFS. GridGain File System (GGFS) is a plug-and-play alternative to the disk-based Hadoop HDFS
enabling up to 10x faster performance for IO and network intensive Hadoop MapReduce jobs running on any Hadoop distribution.

2. Hadoop Installation

This section describes absolute minimal steps on how to install and start Hadoop only. GridGain installation and integration
instructions will come in the following sections.

If you already have Hadoop installed, skip this section. The instructions below assume:

Linux or MacOS environment
Hadoop 1.x or Hadoop 2.x distro
Java 7 (latest update is recommended)

Before installing and starting Hadoop, check that you can login to localhost via SSH without passphrase:

ssh localhost
If passphrase is requested, generate new SSH key (don't forget to backup the existing one):

ssh-keygen -t rsa -P '' -f ~/.ssh/id_rsa
And add this key to authorized keys list:

cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys
Now you should be able to login without passphrase.

2.1 Hadoop 1.x Installation

Perform the following steps:

1. Download Hadoop 1.0.4 (or the latest version) from http://www.us.apache.org/dist/hadoop/common
2. Unzip archive or install package.

3. Open conf/hadoop-env.sh file and add following line to set correct JAVA_HOME path:

export JAVA_HOME="your/java/home/path"

4. Open conf/core-site.xml file and add following lines inside configuration tag:

<property>
 <name>fs.default.name</name>
 <value>hdfs://localhost:9000</value>
</property>

5. If you need MapReduce functionality, open conf/mapred-site.xml file and add following lines inside configuration tag:

<property>
 <name>mapred.job.tracker</name>
 <value>localhost:9001</value>
</property>

6. Go to Hadoop bin folder and run ./hadoop namenode -format command to make initial formatting of name node folder.

®

http://www.us.apache.org/dist/hadoop/common

7. Run start-all.sh script which will run name node, data node, job tracker and task tracker locally. If you don't need MapReduce
functionality, use start-dfs.sh script.

For more information and troubleshooting refer to Hadoop documentation: http://hadoop.apache.org/docs/r1.0.4/.

2.2 Hadoop 2.x Installation

Perform the following steps:

1. Download Hadoop 2.0.3 (or the latest version) from http://www.us.apache.org/dist/hadoop/common
2. Unzip archive or install package.

3. Open etc/hadoop/hadoop-env.sh file and add following line to set correct JAVA_HOME path:

export JAVA_HOME="your/java/home/path"

4. Open etc/hadoop/core-site.xml file and add following lines inside configuration tag:

<property>
 <name>fs.default.name</name>
 <value>hdfs://localhost:9000</value>
</property>

5. If you need MapReduce functionality open etc/hadoop/mapred-site.xml file. If this file does not exist, then create it as a copy of
mapred-site.xml.template file in the same folder. Add following lines inside configuration tag:

<property>
 <name>mapreduce.framework.name</name>
 <value>yarn</value>
</property>

Open etc/hadoop/yarn-site.xml file and add following lines inside configuration tag:

<property>
 <name>yarn.resourcemanager.resource-tracker.address</name>
 <value>localhost:8031</value>
</property>
<property>
 <name>yarn.resourcemanager.scheduler.address</name>
 <value>localhost:8030</value>
</property>
<property>
 <name>yarn.resourcemanager.address</name>
 <value>localhost:8032</value>
</property>
<property>
 <name>yarn.nodemanager.address</name>
 <value>0.0.0.0:8042</value>
</property>
<property>
 <name>yarn.nodemanager.aux-services</name>
 <value>mapreduce.shuffle</value>
</property>

6. Go to Hadoop bin folder and run ./hadoop namenode -format command to make initial formatting of name node folder.

7. Go to Hadoop sbin folder and run ./start-dfs.sh command to start HDFS and ./start-yarn.sh to start MapReduce.

For more information and troubleshooting refer to Hadoop documentation: http://hadoop.apache.org/docs/r2.0.3-alpha/

2.3 Troubleshooting

http://hadoop.apache.org/docs/r1.0.4/
http://www.us.apache.org/dist/hadoop/common
http://hadoop.apache.org/docs/r2.0.3-alpha/

2.3.1 File <..> could only be replicated to 0 nodes, instead of 1

When running benchmarks, you can get the following error:

DataStreamer Exception: org.apache.hadoop.ipc.RemoteException: java.io.IOException: File <..> could only be
replicated to 0 nodes, instead of 1

In this case you should:

1. Stop whole HFDS cluster using stop-dfs.sh script.
2. Delete and recreate name node directory (by default it's /tmp/<hadoop-username>/dfs/name , but it can be customized with

dfs.name.dir in hdfs-site.xml configuration file).
3. Format name node using ./hadoop namenode -format command.
4. Restart the cluster.

2.3.2 Unable to load realm info from SCDynamicStore

When starting HFDS on Mac OS, you can get the following warning:

Unable to load realm info from SCDynamicStore

In this case you should add the following line to script conf/hadoop-env.sh in hadoop 1.x or etc/hadoop/hadoop-env.sh in hadoop
2.x:

export HADOOP_OPTS="$HADOOP_OPTS -Djava.security.krb5.realm= -Djava.security.krb5.kdc="

If running on JDK7, then need to specify JDK6 explicitly by adding the following:

export JAVA_HOME=`/usr/libexec/java_home -v 1.6`

2.3.3 java.net.UnknownHostException: unknown host: shmem

When starting HFDS, you can get the following error:

Exception in thread "main" java.net.UnknownHostException: unknown host: shmem

It this case your HADOOP_CONF_DIR environment variable is pointing to GGFS configuration directory. You need to set HADOOP_CONF_DIR
to empty string and restart HFDS.

2.3.3 org.apache.hadoop.hdfs.server.namenode.NotReplicatedYetException: Not replicated yet

When when working with GGFS in DUAL_SYNC or DUAL_ASYNC modes, you can get the following exception:

org.apache.hadoop.ipc.RemoteException: org.apache.hadoop.hdfs.server.namenode.NotReplicatedYetException:
Not replicated yet

This exception indicates that reading is performed from a secondary file system, but corresponding file block was not replicated to this node
(replication process is asynchronous). In this case you need either have some delay before reading file, or set replication factor to 1.

2.3.4 java.io.IOException: Failed to replace a bad datanode on the existing pipeline…

This is a known issue usually appearing on Hadoop 2.x installations: https://issues.apache.org/jira/browse/HDFS-4600 . If you get this issue,
you should add the following to your core-site.xml file:

<property>
 <name>dfs.client.block.write.replace-datanode-on-failure.policy</name>
 <value>NEVER</value>
</property>

3. GridGain Installation

https://issues.apache.org/jira/browse/HDFS-4600

If you are reading this document you most likely already installed GridGain.

GridGain should be installed on all machines on which Hadoop is installed. GridGain distribution comes in a ZIP file that simply needs to
be unzipped and GRIDGAIN_HOME environment variable should be set to point to distro folder under GridGain installation.

You can use any tools to perform this installation on multiple computers. There are no additional steps required for GridGain installation in
such multi machine setup.

Installation requirements:

1. Windows, Linux, or MacOS environment.
2. Java 7 (latest update is advisable).
3. Point JAVA_HOME environment variable to your JDK or JRE installation.
4. Point GRIDGAIN_HOME environment variable to the distro folder under GridGain installation.

3.1 Check GridGain Installation

To verify GridGain installation, you can execute the GridGain startup script.

The following command will startup GridGain with default configuration using Multicast node discovery.

bin/ggstart.{sh|bat}

The following command will startup GridGain with default configuration using TCP node discovery for all nodes running on local host.

bin/ggstart.{sh|bat} config/tcp/spring-tcp-vm.xml

If GridGain was installed successfully, the output from above commands should produce no exceptions or errors. Note that you may see
some warnings during startup, but this is OK as they are meant to inform that certain functionality is turned on or off by default.

You can execute the above commands multiple times on the same machine and make sure that nodes discover each other. Here is an
example of log printout when 2 nodes join topology:

... Topology snapshot [nodes=2, CPUs=8, hash=0xD551B245]

You can also start GridGain Management Console, called Visor, and observe started nodes show up on Visor Dashboard. To startup Visor in
GUI mode, you should execute the following script:

bin/ggvisorui.{sh|bat}

3.2 Running GridGain Examples

GridGain comes with many well documented examples. All examples have documentation about how they should be started and what the
expected outcome should be.

Use provided pom.xml to import examples into IDE of your choice.

3.3 Configure GridGain Node Discovery

When using TCP-based discovery make sure to update configuration for IP Finder with actual IP addresses like so:

<property name="discoverySpi">
 <bean class="org.gridgain.grid.spi.discovery.tcp.GridTcpDiscoverySpi">
 <property name="ipFinder">
 <bean class="org.gridgain.grid.spi.discovery.tcp.ipfinder.vm.GridTcpDiscoveryVmIpFinder">
 <property name="addresses">
 <list>
 <value>10.1.2.3:47500</value>
 <value>10.1.2.4:47501</value>
 </list>
 </property>
 </bean>

 </property>
 </bean>
</property>

On startup, GridGain node will try to connect to the specified IP addresses one-by-one until it succeeds.

NOTE: you are only required to specify at least 1 IP address of the grid node that will be started first - other IP addresses are
optional.

4. Integration with Hadoop

In addition to direct file system API, GGFS can be integrated into Hadoop so that you can use Hadoop HDFS command line scripts and
MapReduce engine to work with data stored in GGFS on GridGain nodes.

GGFS can be integrated with Hadoop using 4 different modes:

PRIMARY mode - In this mode GGFS serves as a primary standalone distributed in-memory file system
PROXY mode - In this mode GGFS serves as a proxy which will always delegate to HDFS without caching anything in memory.
DUAL_SYNC - In this mode GGFS will synchronously read-through from HDFS whenever data is requested and is not cached in
memory, and synchronously write-through to HDFS whenever data is updated/created in GGFS. Essentially, in this case GGFS
serves as an intelligent caching layer on top of HDFS.
DUAL_ASYNC - In this mode GGFS will synchronously read-through from HDFS whenever data is requested and is not cached in
memory (just like in DUAL_SYNC mode), and asynchronously write-through to HDFS whenever data is updated/created in GGFS.
Since data is modified in HDFS asynchronously, there is a lag between GGFS updates and HDFS updates, however the performance of
updates is significantly faster than using HDFS directly. Essentially, in this case GGFS again serves as an intelligent caching layer on top
of HDFS.

You can configure GGFS mode by setting GridGgfsConfiguration.getPathModes() configuration property either in XML
configuration or directly from code. By default GGFS runs in PRIMARY mode.

NOTE: that in all modes other than PRIMARY mode HDFS data nodes must be started in tandem with GGFS data nodes. Refer
to step (4.6) below for detailed instructions on Hadoop startup.

4.1 Integration with Hadoop 1.x

To integrate GGFS with Hadoop 1.x, do the following:

4.1.1 Create a separate config directory for GGFS

You will need separate configurations to start HFDS and Hadoop map-reduce with GGFS. Copy Hadoop conf configuration directory
under Hadoop installation root to a new folder, called conf-ggfs . This step will separate HFDS configuration from GGFS configuration
and will allow to start Hadoop with GGFS only, with HFDS only, or both with GGFS and HFDS.

4.1.2 Update conf-ggfs/core-site.xml

Configure GGFS implementation of Hadoop file system in conf-ggfs/core-site.xml file:

<property>
 <name>fs.ggfs.impl</name>
 <value>org.gridgain.grid.ggfs.hadoop.v1.GridGgfsHadoopFileSystem</value>
</property>

After GGFS implementation is registered you can use GGFS explicitly providing URI to GGFS path: ggfs://ipc/path/to/my/file . In
this case all intermediate Hadoop files (including task jar files) will still be stored in HDFS, and only paths directly referenced as GGFS will
be stored in GGFS.

If you want to set GGFS as a default file system implementation, add following property to conf-ggfs/core-site.xml :

<property>
 <name>fs.default.name</name>
 <value>ggfs://ipc</value>

</property>

4.1.3 Update Hadoop Classpath

Add GridGain JAR and all libraries it depends on to Hadoop classpath. To do this, add following lines to conf-ggfs/hadoop-env.sh
script in Hadoop distribution (replace GRIDGAIN_HOME with correct path):

export GRIDGAIN_HOME=/path/to/GridGain/distribution
export HADOOP_CLASSPATH=$GRIDGAIN_HOME/gridgain*.jar

for f in $GRIDGAIN_HOME/libs/*.jar; do
 export HADOOP_CLASSPATH=$HADOOP_CLASSPATH:$f;
done

4.2 Integration with Hadoop 2.x

To integrate with Hadoop 2.x, do the following:

4.2.1 Create a separate config directory for GGFS

You will need separate configurations to start HFDS and Hadoop map-reduce with GGFS. Copy Hadoop etc/hadoop configuration
directory under Hadoop installation root to a new folder, called etc/hadoop-ggfs . This step will separate HFDS configuration from
GGFS configuration and will allow to start Hadoop with GGFS only, with HFDS only, or both with GGFS and HFDS.

4.2.2 Update etc/hadoop-ggfs/core-site.xml

Configure GGFS implementation of Hadoop file system in etc/hadoop-ggfs/core-site.xml file:

<property>
 <name>fs.ggfs.impl</name>
 <value>org.gridgain.grid.ggfs.hadoop.v1.GridGgfsHadoopFileSystem</value>
</property>
<property>
 <name>fs.AbstractFileSystem.ggfs.impl</name>
 <value>org.gridgain.grid.ggfs.hadoop.v2.GridGgfsHadoopFileSystem</value>
</property>

Note that both Hadoop 1.x and Hadoop 2.x entries should be added to configuration because Hadoop command line interface uses
Hadoop 1.x File System API.

After GGFS implementation is registered you can use GGFS explicitly providing URI to GGFS path: ggfs://ipc/path/to/my/file . In
this case all intermediate Hadoop files (including task jar files) will still be stored in HDFS, and only paths directly referenced as GGFS will
be stored in GGFS.

If you want to set GGFS as a default file system implementation, add following property to conf-ggfs/core-site.xml :

<property>
 <name>fs.default.name</name>
 <value>ggfs://ipc</value>
</property>

4.2.3 Update Hadoop Classpath

Add GridGain JAR and all libraries it depends on to Hadoop classpath. To do this, add following lines to etc/hadoop-ggfs/hadoop-
env.sh script in Hadoop distribution (replace GRIDGAIN_HOME with correct path):

export GRIDGAIN_HOME=/path/to/GridGain/distribution
export HADOOP_CLASSPATH=$GRIDGAIN_HOME/gridgain*.jar

for f in $GRIDGAIN_HOME/libs/*.jar; do
 export HADOOP_CLASSPATH=$HADOOP_CLASSPATH:$f;

done

4.3 Configure GGFS

NOTE: make sure to have set GRIDGAIN_HOME environment variable to point to distro folder under GridGain installation.

GridGain comes with default configuration for GGFS file system. Hadoop needs to use file system remotely from client nodes as well as
directly on data nodes. Client nodes are responsible for basic file system operations as well as accessing data nodes remotely. Usually, client
nodes are started together with job-submitter or job-tracker processes, while data nodes are usually started together with Hadoop
task-tracker processes.

Configuration files for GGFS client and data nodes are located in GridGain config folder. You can get started with default configuration
and then change individual properties as you progress. To start client and data nodes respectively, you will use the following commands:

`bin/ggstart.sh config/ggfs/default-ggfs-client.xml`
`bin/ggstart.sh config/ggfs/default-ggfs-data.xml`

Refer to respective configuration files and GridGgfsConfiguration class JavaDoc for more information.

NOTE: to make sure that GridGain nodes find each other over network, make sure to update default-ggfs-base.xml file
with actual node IP address for GridTcpDiscoverySpi configuration. You can specify only 1 or 2 IP addresses of the nodes
that you will start first.

4.4. Start GGFS Client and Data Nodes

After having configured Hadoop with GGFS as described above, you can start GGFS nodes. By default GridCain will use Hadoop 2.x
libraries to connect to HDFS whenever this is needed. You should pass -h1 command line argument to GridGain node to switch to
Hadoop 1.x libraries.

1. On Hadoop job-submitter or job-client machine start GGFS client node as follows:

bin/ggstart.sh config/ggfs/default-ggfs-client.xml
2. On Hadoop job-tracker machine start GGFS client node using the same command as in (1).

3. On machines that have Hadoop task-tracker and data-node start GGFS data node as follows:

bin/ggstart.sh config/ggfs/default-ggfs-data.xml

NOTE: you do not need to start multiple GGFS nodes on the same machine (although it is allowed). For example, if you
submitting jobs from the same machine on which job-tracker or task-tracker is running, then you do not need to start
additional GGFS nodes.

4.5 Start HDFS Data Nodes

NOTE: skip this step if starting GGFS in PRIMARY mode.

If you wish to start GGFS in tandem with HDFS (either PROXY , DUAL_SYNC , or DUAL_ASYNC modes described above), you will need to
start HDFS data nodes. To do this, do the following:

1. Set HADOOP_CONF_DIR environment variable either to empty string or to point to /path/to/hadoop/conf directory.
2. Execute bin/start-dfs.sh script under Hadoop 1.x installation and sbin/start-dfs.sh script under Hadoop 2.x installation as

you would normally do to start HDFS.

4.6 Start Hadoop MapReduce

To start Hadoop MapReduce framework, do the following:

1. Set HADOOP_CONF_DIR environment variable to point to /path/to/hadoop/conf-ggfs directory.
2. Start Hadoop Map-Reduce with bin/start-mapred.sh under Hadoop 1.x installation directory and sbin/start-yarn.sh under

Hadoop 2.x installation directory as you would normally do.

NOTE: you should not start HDFS (specifically running bin/start-dfs.sh script) with HADOOP_CONF_DIR pointing to conf-
ggfs folder as it will lead to "java.net.UnknownHostException: unknown host: shmem" error.

4.7 Use Hadoop with GGFS

You can now use Hadoop with GGFS utilizing all standard APIs and tools, just like you would normally do with any standard Hadoop
installation.

NOTE: By default GGFS does not back up data to other nodes for performance and capacity reasons. This means that
whenever running in PRIMARY mode, any node shutdown would result in data loss and require restart of the cluster. If you
need to add redundancy, then configure number of backups to value other than 0 in your data cache (the value is configured
in GridCachePartitionedAffinity.setBackups(...) configuration property). In any mode other than PRIMARY , number
of backups should always be 0 , as data can always be reloaded from disk in case of any crash and it does not make sense to
back it up.

5. Benchmarks

GridGain ships with various benchmarks to compare GGFS performance to HDFS. You can find GGFS benchmarks under
benchmark/filesystem folder in GridGain distribution. The following benchmark results were acquired on 7-node cluster of Dell R610
with Dual 8-Core CPUs (1 node to submit jobs and 6 data nodes):

Benchmark GGFS (milliseconds) HDFS (milliseconds)

Directory Create (1000 directories) 9,912 12,478

Directory Listing (local name-node, 100 dirs x 10 files) 30 77

Directory Listing (remote name-node, 100 dirs x 10 files) 30 88

Directory Delete (3 files per dir) 728 1,243

Directory Delete (empty dir) 240 1,245

Directory Random Operation (100 ops x 100 dirs) 943 3,651

File Create (10 x 1MB files) 96 961

File Create (5 x 256MB files) 4,300 23,000

File Delete (100 x 1MB files) 185 1,234

File Read/Scan (100 x 1MB files) 273 720

File Random Block Access (10 x 1MB files) 5 21

File Random Operation (100 ops x 10 x 1MB files) 431 2,931

No changes to default configuration were done when running these benchmarks.

5.1 Teragen and Terasort

We have also ran Hadoop Teragen and Terasort examples on 20GB data set. Note that the reason we are not seeing >10x
performance with GGFS here is because both examples spend significant amount of time computing and sorting data vs. interacting with

file system. Yet, with GGFS we still see significant performance improvements over HDFS.

Benchmark GGFS (seconds) HDFS (seconds)

Teragen 33 70

Terasort 120 180

The following additional configuration parameters were passed to Hadoop when running Teragen and Terasort :

1. Teragen

-Dio.file.buffer.size=$((256 * 1024)) // this is 256kb
-Dmapred.map.tasks=24

2. Terasort

-Dio.file.buffer.size=$((256 * 1024)) // this is 256kb
-Dmapred.reduce.tasks=6 // number of reduce tasks equal to number of data nodes.

6. Management & Monitoring with Visor

GridGain comes with GUI and CLI (command) based DevOps Managements Consoles delivering advance set of management and
monitoring capabilities. Visor GUI is based on a standalone Java application and CLI version is built on top of Scala REPL providing fully
scriptable and customizable DevOps environment.

To start Visor GUI console, execute the following command:

`bin/ggvisorui.sh`

To start Visor in console mode you should execute the following command:

`bin/ggvisorcmd.sh`

On Windows, run the same commands with .bat extension.

NOTE: Visor GUI console has a much richer set of functionality over Visor command-based console. You should always
prefer Visor GUI console whenever possible.

Here is an example of Visor File Manager Tab which allows basic file system operations within same file system or across different file
systems.

